日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),.

          (1)求的極值;

          (2)若對任意的,當(dāng)時,恒成立,求實(shí)數(shù)的最大值;

          (3)若函數(shù)恰有兩個不相等的零點(diǎn),求實(shí)數(shù)的取值范圍.

          【答案】(1)的極小值為,無極大值;(2);(3) .

          【解析】

          (1)求出,判斷其符號,得出的單調(diào)性即可

          (2)變形為,構(gòu)造函數(shù),轉(zhuǎn)化為恒成立即可

          (3)求出,然后分四種情況討論

          (1),令,得.

          列表如下:

          1

          0

          極小值

          ,∴的極小值為,無極大值.

          (2)∵,由(1)可知

          等價于,

          .

          設(shè),則為增函數(shù).

          恒成立.

          恒成立.

          設(shè),∵上恒成立

          為增函數(shù).

          上的最小值為.

          ,∴的最大值為.

          (3)

          ①當(dāng)時,當(dāng)時,單調(diào)遞增

          當(dāng)時,,單調(diào)遞減

          所以的極大值為

          所以函數(shù)至多一個零點(diǎn)

          ②當(dāng)時,,上單調(diào)遞增.

          ③當(dāng)時,當(dāng)時,,單調(diào)遞增

          當(dāng)時,,單調(diào)遞減

          所以的極大值為

          的極小值為

          所以函數(shù)至多有一個零點(diǎn).

          ④當(dāng)時,當(dāng),,單調(diào)遞增

          當(dāng)時,,單調(diào)遞減

          所以

          Ⅰ:當(dāng)時,即時,函數(shù)至多一個零點(diǎn).

          Ⅱ:當(dāng)時,

          所以存在,

          所以函數(shù)上有唯一的零點(diǎn).

          所以函數(shù)上有唯一的零點(diǎn).

          綜上所述:實(shí)數(shù)的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某良種培育基地正在培育一種小麥新品種A.將其與原有的一個優(yōu)良品種B進(jìn)行對照試驗(yàn).兩種小麥各種植了25畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:

          品種A357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454

          品種B363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430

          (1)作出莖葉圖;

          (2)通過觀察莖葉圖,對品種AB的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計(jì)結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心為,圓的圓心為,一動圓與圓內(nèi)切,與圓外切.

          (1)求動圓圓心的軌跡方程;

          (2)過點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)是直線上任意點(diǎn),直線,的斜率分別為,,試探求,,的關(guān)系,并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為,拋物線的焦點(diǎn)恰好是該橢圓的一個頂點(diǎn).

          1)求橢圓的方程;

          2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點(diǎn),那么以為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,若曲線與曲線關(guān)于直線對稱.

          1)求曲線的直角坐標(biāo)方程;

          2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)在曲線yx2(x0)上.已知A(0,-1),,n∈N*.記直線APn的斜率為kn

          1)若k12,求P1的坐標(biāo);

          2)若k1為偶數(shù),求證:kn為偶數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,點(diǎn)在橢圓.

          1)求橢圓的方程;

          2)已知圓,連接并延長交圓于點(diǎn)為橢圓長軸上一點(diǎn)(異于左、右焦點(diǎn)),過點(diǎn)作橢圓長軸的垂線分別交橢圓和圓于點(diǎn)均在軸上方).連接,記的斜率為的斜率為.

          ①求的值;

          ②求證:直線的交點(diǎn)在定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,四點(diǎn),,,中恰有三點(diǎn)在橢圓.

          1)求的方程;

          2)設(shè)的短軸端點(diǎn)分別為,,直線,兩點(diǎn),交軸于點(diǎn),若,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為21,則該雙曲線的離心率為

          A.

          B.

          C.

          D.

          查看答案和解析>>

          同步練習(xí)冊答案