【題目】如圖,在正四棱錐中,
,點
、
分別在線段
、
上,
.
(1)若,求證:
⊥
;
(2)若二面角的大小為
,求線段
的長.
【答案】(1)證明見解析;(2).
【解析】
試題由于圖形是正四棱錐,因此設(shè)AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設(shè)
=λ
,得M(λ,0,1-λ),然后求出平面MBD的法向量
,而平面ABD的法向量為
,利用法向量夾角與二面角相等或互補可求得
.
試題解析: (1)連結(jié)AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.
因為PA=AB=,
則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).
由=
,得N
,
由=
,得M
,
所以,
=(-1,-1,0).
因為=0,所以MN⊥AD
(2) 解:因為M在PA上,可設(shè)=λ
,得M(λ,0,1-λ).
所以=(λ,-1,1-λ),
=(0,-2,0).
設(shè)平面MBD的法向量=(x,y,z),
由,得
其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).
因為平面ABD的法向量為=(0,0,1),
所以cos=
,即
=
,解得λ=
,
從而M,N
,
所以MN==
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的一條漸近線方程為2x+y=0,且頂點到漸近線的距離為
.
(1)求此雙曲線的方程;
(2)設(shè)P為雙曲線上一點,A,B兩點在雙曲線的漸近線上,且分別位于第一、二象限,若,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
,
為自然對數(shù)的底數(shù).
(Ⅰ)設(shè)是函數(shù)
的導(dǎo)函數(shù),求函數(shù)
在區(qū)間
上的最小值;
(Ⅱ)若,函數(shù)
在區(qū)間
內(nèi)有零點,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )
A. 是否傾向選擇生育二胎與戶籍有關(guān)
B. 是否傾向選擇生育二胎與性別有關(guān)
C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同
D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,
是棱
上的一點,滿足
平面
.
(Ⅰ)證明:;
(Ⅱ)設(shè),
,若
為棱
上一點,使得直線
與平面
所成角的大小為30°,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為
,直線l過點
且與x軸不重合,l交圓
于C,D兩點,過
作
的平行線,交
于點E.設(shè)點E的軌跡為
.
(1)求的方程;
(2)直線與
相切于點M,
與兩坐標軸的交點為A與B,直線
經(jīng)過點M且與
垂直,
與
的另一個交點為N,當(dāng)
取得最小值時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域為
,求
的值;
(Ⅱ)巳,是否存在這祥的實數(shù)
,使函數(shù)
在區(qū)間
內(nèi)有且只有一個零點.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,其前
項和為
,滿足
,
,其中
,
,
,
.
⑴若,
,
(
),求證:數(shù)列
是等比數(shù)列;
⑵若數(shù)列是等比數(shù)列,求
,
的值;
⑶若,且
,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】衡陽市八中對參加“社會實踐活動”的全體志愿者進行學(xué)分考核,因該批志愿者表現(xiàn)良好,學(xué)校決定考核只有合格和優(yōu)秀兩個等次.若某志愿者考核為合格,授予1個學(xué)分;考核為優(yōu)秀,授予2個學(xué)分,假設(shè)該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為、
、
,他們考核所得的等次相互獨立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機變量,求隨機變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com