【題目】已知數(shù)列,其前
項(xiàng)和為
,滿足
,
,其中
,
,
,
.
⑴若,
,
(
),求證:數(shù)列
是等比數(shù)列;
⑵若數(shù)列是等比數(shù)列,求
,
的值;
⑶若,且
,求證:數(shù)列
是等差數(shù)列.
【答案】(1)見(jiàn)解析(2)(3)見(jiàn)解析
【解析】試題分析:(1)(
), 所以
,故數(shù)列
是等比數(shù)列;(2)利用特殊值法,得
,故
;(3)得
,所以
,得
,可證數(shù)列
是等差數(shù)列.
試題解析:
(1)證明:若,則當(dāng)
(
),
所以,
即,
所以,
又由,
,
得,
,即
,
所以,
故數(shù)列是等比數(shù)列.
(2)若是等比數(shù)列,設(shè)其公比為
(
),
當(dāng)時(shí),
,即
,得
, ①
當(dāng)時(shí),
,即
,得
, ②
當(dāng)時(shí),
,即
,得
, ③
②①,得
,
③②,得
,
解得.
代入①式,得.
此時(shí)(
),
所以,
是公比為1的等比數(shù)列,
故.
(3)證明:若,由
,得
,
又,解得
.
由,
,
,
,代入
得
,
所以,
,
成等差數(shù)列,
由,得
,
兩式相減得:
即
所以
相減得:
所以
所以
,
因?yàn)?/span>,所以
,
即數(shù)列是等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)
已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)試求出S1,S2,S3,S4,并猜想Sn的表達(dá)式;
(2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來(lái)華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”. “中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,點(diǎn)M為棱AE的中點(diǎn).
(1)求證:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱錐A-CEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名技術(shù)人員,將他們隨機(jī)分成兩組,每組20人,第一組技術(shù)人員用第一種生產(chǎn)方式,第二組技術(shù)人員用第二種生產(chǎn)方式.根據(jù)他們完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
(1)求40名技術(shù)人員完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)
和不超過(guò)
的人數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | 合計(jì) | |
第一種生產(chǎn)方式 | |||
第二種生產(chǎn)方式 | |||
合計(jì) |
(2)根據(jù)(1)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 1.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和
,在點(diǎn)
處交匯,該商業(yè)區(qū)為圓心角
,半徑3
的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路
,與
,
分別交于
,要求
與扇形弧相切,切點(diǎn)
不在
,
上.
(1)設(shè)試用
表示新建公路
的長(zhǎng)度,求出
滿足的關(guān)系式,并寫出
的范圍;
(2)設(shè),試用
表示新建公路
的長(zhǎng)度,并且確定
的位置,使得新建公路
的長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)對(duì)定義域內(nèi)的每一個(gè)值x1,在其定義域內(nèi)都存在唯一的x2,使f(x1)f(x2)=1成立,則稱該函數(shù)為“依賴函數(shù)”.
(1) 判斷函數(shù)g(x)=2x是否為“依賴函數(shù)”,并說(shuō)明理由;
(2) 若函數(shù)f(x)=(x–1)2在定義域[m,n](m>1)上為“依賴函數(shù)”,求實(shí)數(shù)m、n乘積mn的取值范圍;
(3) 已知函數(shù)f(x)=(x–a)2 (a<)在定義域[
,4]上為“依賴函數(shù)”.若存在實(shí)數(shù)x[
,4],使得對(duì)任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求實(shí)數(shù)s的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求
的值;
(3)當(dāng)時(shí),
恒成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句是否為命題?如果是,判斷它的真假.
(1)這道數(shù)學(xué)題有趣嗎?(2)0不可能不是自然數(shù);(3);(4)
;
(5)91不是素?cái)?shù);(6)上海的空氣質(zhì)量越來(lái)越好.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com