【題目】已知橢圓的離心率為
,且
過點
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點(點
均在第一象限),且直線
的斜率成等比數(shù)列,證明:直線
的斜率為定值.
【答案】(1) ;(2)見解析.
【解析】試題分析:
(1)根據(jù)橢圓的離心率和所過的點得到關(guān)于的方程組,解得
后可得橢圓的方程.(2)由題意設(shè)直線
的方程為
,與橢圓方程聯(lián)立后消元可得二次方程,根據(jù)二次方程根與系數(shù)的關(guān)系可得直線
的斜率,再根據(jù)題意可得
,根據(jù)此式可求得
,為定值.
試題解析:
(1)由題意可得,解得
.
故橢圓的方程為
.
(2)由題意可知直線的斜率存在且不為0,設(shè)直線
的方程為
,
由,消去
整理得
,
∵直線與橢圓交于兩點,
∴.
設(shè)點的坐標分別為
,
則,
∴.
∵直線的斜率成等比數(shù)列,
∴,
整理得,
∴,
又,所以
,
結(jié)合圖象可知,故直線
的斜率為定值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,平面
底面
,
為
中點,
是棱
上的點,
.
(Ⅰ)若點是棱
的中點,求證:
平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若二面角為
,設(shè)
,試確定
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求
的最小值.
(Ⅱ)若在區(qū)間
上有兩個極值點
,
(i)求實數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值,并指出是極大值還是極小值;
(2)若,求證:在區(qū)間
上,函數(shù)
的圖像在函數(shù)
的圖像的下方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年10月18日至10月24日,中國共產(chǎn)黨第十九次全國代表大會簡稱黨的“十九大”
在北京召開
一段時間后,某單位就“十九大”精神的領(lǐng)會程度隨機抽取100名員工進行問卷調(diào)查,調(diào)查問卷共有20個問題,每個問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績都在
內(nèi),按成績分成5組:第1組
,第2組
,第3組
,第4組
,第5組
,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對“十九大”精神作深入學習.
求這100人的平均得分
同一組數(shù)據(jù)用該區(qū)間的中點值作代表
;
求第3,4,5組分別選取的作深入學習的人數(shù);
若甲、乙、丙都被選取對“十九大”精神作深入學習,之后要從這6人隨機選取2人再全面考查他們對“十九大”精神的領(lǐng)會程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1人現(xiàn)從這5名工人中隨機抽取2名.
Ⅰ
求被抽取的2名工人都是初級工的概率;
Ⅱ
求被抽取的2名工人中沒有中級工的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】省環(huán)保廳對、
、
三個城市同時進行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
|
|
| |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);
(2)已知,
,求在
城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,
為橢圓
:
上異于點A,B的任意一點.
(Ⅰ)求證:直線、
的斜率之積為
-;
(Ⅱ)是否存在過點的直線
與橢圓
交于不同的兩點
、
,使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com