日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在三棱錐中,底面是邊長(zhǎng)為6的正三角形,底面,且與底面所成的角為

          1)求三棱錐的體積;

          2)若的中點(diǎn),求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

          【答案】(1)(2)

          【解析】

          1)由底面,可得與平面所成的角,且,因此在,,,代入求值即可;

          2)設(shè)為棱的中點(diǎn),連接,可得,的夾角為異面直線所成的角,即為,由求得,在利用余弦定理即可求出

          解:(1)因?yàn)?/span>平面,所以與平面所成的角,

          與平面所成的角為,可得,

          因?yàn)?/span>平面,平面,所以,

          ,可知,

          所以

          2)設(shè)為棱的中點(diǎn),連接,

          分別是棱的中點(diǎn),可得,

          所以的夾角為異面直線所成的角,即為,

          因?yàn)?/span>平面,平面,所以,,

          ,,,

          所以,

          ,

          所以,

          故異面直線所成的角為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1ρ2cosθ

          (1)求C1C2交點(diǎn)的直角坐標(biāo);

          (2)若直線l與曲線C1C2分別相交于異于原點(diǎn)的點(diǎn)M,N,求|MN|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱錐中,是等邊三角形,是線段的中點(diǎn),是線段上靠近的四等分點(diǎn),平面平面.

          1)求證:;

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線過(guò)點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.

          1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

          2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,. 對(duì)于函數(shù),若存在常數(shù),,使得,不等式都成立,則稱直線是函數(shù)的分界線.

          1)討論函數(shù)的單調(diào)性;

          2)當(dāng)時(shí),試探究函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果對(duì)一切正實(shí)數(shù),,不等式恒成立,則實(shí)數(shù)的取值范圍是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請(qǐng)全國(guó)人大常委會(huì)審議,草案對(duì)“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國(guó)家推行生活垃圾分類制度.為了了解人民群眾對(duì)垃圾分類的認(rèn)識(shí),某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識(shí)問(wèn)卷調(diào)查,每一位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:

          得分

          頻數(shù)

          25

          150

          200

          250

          225

          100

          50

          1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

          2)在(1)的條件下,市環(huán)保部門為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

          ①得分不低于 “的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

          ②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

          獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

          20

          40

          概率

          現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

          附:①;②若,則,,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)年的純利潤(rùn)為萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)從今年(年)起每年比上一年純利潤(rùn)減少萬(wàn)元,今年初該企業(yè)一次性投入資金萬(wàn)元進(jìn)行技術(shù)改造,預(yù)計(jì)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤(rùn)為萬(wàn)元(為正整數(shù)).

          1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬(wàn)元(須扣除技術(shù)改造資金),求,的表達(dá)式;

          2)以上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過(guò)多少年后,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個(gè)不同的平面,下列命題中正確的是(

          A.αβ , βγ ,則αγ

          B. , , mn ,則αβ

          C. m、n 是異面直線, , mβ , nα ,則αβ

          D.平面α內(nèi)有不共線的三點(diǎn)到平面 β的距離相等,則αβ

          查看答案和解析>>

          同步練習(xí)冊(cè)答案