日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖的空間幾何體中,四邊形為邊長為2的正方形,平面,,且,.

          1)求證:平面平面;

          2)求平面與平面所成的銳二面角的余弦值.

          【答案】1)見解析;(2

          【解析】

          1)分別取的中點(diǎn),,連接,,,首先證明出四邊形為平行四邊形得到,接著通過證明來得到,通過面面垂直判定定理即可得結(jié)果;

          2)如圖所示:取中點(diǎn),記,連接,,利用線面平行性質(zhì)定理證出兩面的交線與平行,然后再證出,可得為平面與平面ABCD所成二面角的平面角,在中即可求得答案.

          1)如圖所示:

          分別取的中點(diǎn),,連接,,

          ,,,

          ,,

          ∴四邊形為平行四邊形,∴,

          由于,的中點(diǎn),四邊形為邊長為2的正方形

          ,

          又∵平面,∴,

          又∵,∴,

          ,

          ∴平面平面.

          2)如圖所示:取中點(diǎn),記,連接,,

          由(1)知,,∴ABCD,

          記面,則

          易得,即,

          又∵平面,∴,

          又∵,

          ,∴,即為直角三角形,

          同理為直角三角形,

          由于,

          ,則,∴,

          ,即,

          ∴則為平面與平面ABCD所成二面角的平面角,

          由四邊形為邊長為2的正方形得,

          ,∴

          即平面與平面所成的銳二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于函數(shù),下列說法正確的是______(填上所有正確命題序號).(1)的極大值點(diǎn) ;(2)函數(shù)有且只有1個(gè)零點(diǎn);(3)存在正實(shí)數(shù),使得恒成立 ;(4)對任意兩個(gè)正實(shí)數(shù),且,若,則.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,.

          (1)當(dāng)時(shí),求函數(shù)的極值;

          (2)若在區(qū)間上存在不相等的實(shí)數(shù),使得成立,求的取值范圍;

          (3)設(shè)的圖象為,的圖象為,若直線分別交于,問是否存在整數(shù),使處的切線與處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)購平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

          (1)求的值;

          2)分析人員對100名調(diào)查對象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?

          (3)分析人員對抽取對象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)

          列聯(lián)表

          男性

          女性

          合計(jì)

          消費(fèi)金額

          消費(fèi)金額

          合計(jì)

          臨界值表:

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從裝有個(gè)不同小球的口袋中取出個(gè)小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCDA1B1C1D1中,下列判斷正確的是(

          A.A1C⊥面AB1D1B.A1C⊥面AB1C1D

          C.A1B⊥面AB1D1D.A1BAD1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

          微信控

          非微信控

          合計(jì)

          男性

          26

          24

          50

          女性

          30

          20

          50

          合計(jì)

          56

          44

          100

          (1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

          (2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

          (3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人位“微信控”的概率.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).

          (Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

          (Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn),兩點(diǎn)的距離之積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).

          1)當(dāng)拋物線過點(diǎn)時(shí),求拋物線的方程;

          2)證明:是定值.

          查看答案和解析>>

          同步練習(xí)冊答案