日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】從裝有個不同小球的口袋中取出個小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )

          A. B. C. D.

          【答案】A

          【解析】分析:從裝有個不同小球的口袋中取出個小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,第二類是某指定的小球被取到,即有等式:成立,題中的式子表示的是從裝有個球中取出個球的不同取法數(shù),從而得到選項(xiàng).

          詳解:在中,從第一項(xiàng)到最后一項(xiàng)分別表示:

          從裝有個白球,個黑球的袋子里,取出個球的所有情況取法總數(shù)的和,故答案為:從裝有個球中取出個球的不同取法數(shù),故選A.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)).

          (Ⅰ)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

          (Ⅱ)若對任意的,都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,直線。

          (Ⅰ)求證:直線與圓C恒有兩個交點(diǎn);

          (Ⅱ)求出直線被圓C截得的最短弦長,并求出截得最短弦長時的的值;

          (Ⅲ)設(shè)直線與圓C的兩個交點(diǎn)為M,N,且(點(diǎn)C為圓C的圓心),求直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認(rèn)知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認(rèn)知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.

          (1)求;

          (2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));

          (3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業(yè)分的組中每組各選派1人參加知識競賽,分別代表相應(yīng)組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.

          (Ⅰ)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;

          (Ⅱ)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認(rèn)知程度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a4=2且,數(shù)列滿足 ,

          (1)證明:數(shù)列{an}為等差數(shù)列;

          (2)是否存在正整數(shù)(1<),使得成等比數(shù)列,若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

          (1)若,求的周長(結(jié)果精確到0.01米);

          (2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當(dāng)為何值時,該活動室面積最大?并求出最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖,則下面結(jié)論中不正確的是( )

          建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例

          A. 新農(nóng)村建設(shè)后養(yǎng)殖收入增加了一倍

          B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

          C. 新農(nóng)村建設(shè)后,種植收入減少

          D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】”是“對任意的正數(shù), ”的( )

          A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

          【答案】A

          【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對任意的正數(shù)x,2x+≥1”對任意的正數(shù)x,2x+≥1”?“a=

          真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.

          解答:解:當(dāng)“a=時,由基本不等式可得:

          對任意的正數(shù)x2x+≥1”一定成立,

          “a=”?“對任意的正數(shù)x2x+≥1”為真命題;

          對任意的正數(shù)x,2x+≥1時,可得“a≥

          對任意的正數(shù)x,2x+≥1”?“a=為假命題;

          “a=對任意的正數(shù)x2x+≥1充分不必要條件

          故選A

          型】單選題
          結(jié)束】
          11

          【題目】如圖,四棱錐中, 平面,底面為直角梯形, , , ,點(diǎn)在棱上,且,則平面與平面的夾角的余弦值為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的對稱軸方程;

          2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若, , 分別是三個內(nèi)角, , 的對邊, , ,且,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案