日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

          日 期

          1月10日

          2月10日

          3月10日

          4月10日

          5月10日

          6月10日

          晝夜溫差x(°C)

          10

          11

          13

          12

          8

          6

          就診人數(shù)y(個(gè))

          22

          25

          29

          26

          16

          12

          該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

          (2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

          (3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否理想?

          參考公式:

          【答案】(1)(2)(3)該小組所得線性回歸方程是理想的

          【解析】試題分析:(1)第(1)問(wèn),一般直接利用古典概型的概率公式計(jì)算. (2)第(2)問(wèn),先計(jì)算出回歸方程的基本量,再代入回歸方程即可. (3)計(jì)算出x=10x=6對(duì)應(yīng)的誤差,再判斷.

          試題解析:(1)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A.因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的其中,抽到相鄰兩個(gè)月份的數(shù)據(jù)的情況有5種,所以

          (2)由數(shù)據(jù)求得,由公式求得,再由

          所以y關(guān)于x的線性回歸方程為.

          (3)當(dāng)x=10時(shí),;同樣,當(dāng)x=6時(shí),

          所以該小組所得線性回歸方程是理想的.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】己知函數(shù)f(x)=xlnx.
          (1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2)對(duì)x≥1,f(x)≤m(x2﹣1)成立,求實(shí)數(shù)m的最小值;
          (3)證明:1n .(n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
          (1)證明:數(shù)列{ }是等差數(shù)列;
          (2)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.

          (1)求拋物線的方程;

          (2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義非零向量的“相伴函數(shù)”為),向量稱為函數(shù)的“相伴向量”(其中為坐標(biāo)原點(diǎn)),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為.

          (1)已知),求證:,并求函數(shù)的“相伴向量”模的取值范圍;

          (2)已知點(diǎn))滿足,向量的 “相伴函數(shù)”處取得最大值,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

          組號(hào)

          1

          2

          3

          4

          5

          溫差

          10

          11

          13

          12

          8

          發(fā)芽數(shù)(顆)

          23

          25

          30

          26

          16

          該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

          2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

          (參考公式:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某單位將舉辦慶典活動(dòng),要在廣場(chǎng)上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計(jì)要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場(chǎng)地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長(zhǎng)度和記為l.
          (1)請(qǐng)將l表示成關(guān)于α的函數(shù)l=f(α);
          (2)問(wèn)當(dāng)α為何值時(shí)l最?并求最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

          (1)求{an}的通項(xiàng)公式.

          (2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某地一天從 6 ~ 14 時(shí)的溫度變化曲線近似滿足函數(shù):,則中午 12 點(diǎn)時(shí)最接近的溫度為

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案