日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,已知 an+1=an-4且 3a4=7a7,Sn為數(shù)列{an}的前n項(xiàng)和,Sn有最大值還是最小值?求出這個(gè)最值.

          解:∵an+1=an-4
          ∴an+1-an=-4
          ∴數(shù)列{an}為公差為-4數(shù)列的等差數(shù)列
          ∵3a4=7a7
          ∴a1=33
          ∴an=-4n+37
          令an≥0
          ∴n≤
          ∴等差數(shù)列{an}的前9項(xiàng)均為正從第10項(xiàng)開(kāi)始均為負(fù)
          ∴數(shù)列{an}的前n項(xiàng)和Sn有最大值
          ∴(sn)mnx=s9=9×33-×9×8×(-4)=153
          即數(shù)列{an}的前n項(xiàng)和Sn有最大值且最大值為153
          分析:根據(jù)an+1=an-4可得出數(shù)列{an}為等差數(shù)列且公差為-4再根據(jù) 3a4=7a7即可求出a1從而求出通項(xiàng)an=-4n+37可令an≥0求出n的范圍再結(jié)合等差數(shù)列的函數(shù)特性就可判斷出等差數(shù)列{an}中項(xiàng)的正負(fù)的分布情況進(jìn)而可求出Sn有最大值還是有最小值然后根據(jù)等差數(shù)列的前n項(xiàng)和公式即可求出這個(gè)最值.
          點(diǎn)評(píng):本題主要考查了利用等差數(shù)列的性質(zhì)求前n項(xiàng)和的最大最小值.解題的關(guān)鍵是要根據(jù)等差數(shù)列的函數(shù)特性(要么遞增要么遞減要么是常數(shù)列)再結(jié)合an≥0求出的n的范圍即可對(duì)此數(shù)列項(xiàng)的正負(fù)情況作出判斷后問(wèn)題就迎刃而解了!
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,已知a1=
          1
          4
          ,
          an+1
          an
          =
          1
          4
          ,bn+2=3log 
          1
          4
          an(n∈N*).
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求證:數(shù)列{bn}是等差數(shù)列;
          (Ⅲ)設(shè)cn=
          3
          bnbn+1
          ,Sn是數(shù)列{cn}的前n項(xiàng)和,求使Sn
          m
          20
          對(duì)所有n∈N*都成立的最小正整數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,已知a1=1,an+1=
          an1+2an
          (n∈N+)

          (1)求a2,a3,a4,并由此猜想數(shù)列{an}的通項(xiàng)公式an的表達(dá)式;
          (2)用適當(dāng)?shù)姆椒ㄗC明你的猜想.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個(gè)位數(shù)(n∈N*),若數(shù)列{an}的前k項(xiàng)和為2011,則正整數(shù)k之值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•淮南二模)在數(shù)列{an}中,已知an≥1,a1=1,且an+1-an=
          2
          an+1+an-1
          ,n∈N+
          (1)記bn=(an-
          1
          2
          2,n∈N+,求證:數(shù)列{bn}是等差數(shù)列;
          (2)求{an}的通項(xiàng)公式;
          (3)對(duì)?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,已知a1=
          7
          2
          ,an=3an-1+3n-1(n≥2,n∈N*).
          (Ⅰ)計(jì)算a2,a3;
          (Ⅱ)求證:{
          an-
          1
          2
          3n
          }是等差數(shù)列;
          (Ⅲ)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案