【題目】如圖,在四棱錐中,
平面
,
,
,且
,
.
(1)證明:.
(2)若,試在棱
上確定一點(diǎn)
,使
與平面
所成角的正弦值為
.
【答案】(1)證明見(jiàn)解析;(2)點(diǎn)為棱
的中點(diǎn)
【解析】
(1)在同一平面內(nèi)用數(shù)據(jù)說(shuō)話證明 ,利用
平面
,證明
,
從而得證平面
,得到
.
(1)取的中點(diǎn)
,以
為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,使用空間向量求
及平面
的一個(gè)法向量
,利用夾角公式求解即可.
(1)證明:∵,且
,∴
,
∴,又∵
,∴
,即
.
∵平面
,
平面
,∴
,
又∵,∴
平面
,
∵平面
,∴
.
(2)解:取的中點(diǎn)
,以
為坐標(biāo)原點(diǎn),
,
,
所在的直線分別為
軸,
軸,
軸建立空間直角坐標(biāo)系
.如圖所示.
設(shè),則
,
,
,
,
,
則,
,
,
設(shè),
則.
由(1)可知,平面
,∴
為平面
的一個(gè)法向量.
設(shè)與平面
所成的角為
.
則,
整理得,解得
或
(舍),
∴點(diǎn)為棱
的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足奇數(shù)項(xiàng)
成等差,公差為
,偶數(shù)項(xiàng)
成等比,公比為
,且數(shù)列
的前
項(xiàng)和為
,
,
.
若
,
.
①求數(shù)列的通項(xiàng)公式;
②若,求正整數(shù)
的值;
若
,
,對(duì)任意給定的
,是否存在實(shí)數(shù)
,使得
對(duì)任意
恒成立?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的實(shí)系數(shù)方程和
有四個(gè)不同的根,若這四個(gè)根在復(fù)平面上對(duì)應(yīng)的點(diǎn)共圓,則m的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院對(duì)治療支氣管肺炎的兩種方案,
進(jìn)行比較研究,將志愿者分為兩組,分別采用方案
和方案
進(jìn)行治療,統(tǒng)計(jì)結(jié)果如下:
有效 | 無(wú)效 | 合計(jì) | |
使用方案 | 96 | 120 | |
使用方案 | 72 | ||
合計(jì) | 32 |
(1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?
附:,其中
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線上一點(diǎn)
作直線交拋物線E于另一點(diǎn)N.
(1)若直線MN的斜率為1,求線段的長(zhǎng).
(2)不過(guò)點(diǎn)M的動(dòng)直線l交拋物線E于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過(guò)點(diǎn)M,問(wèn)動(dòng)直線l是否恒過(guò)定點(diǎn).如果有求定點(diǎn)坐標(biāo),如果沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線
由四段曲線組成:
,
,
,
.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:
與曲線
恰有3個(gè)公共點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓的離心率為
,點(diǎn)
在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.
①求證:是直角三角形;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)坐標(biāo)為
,直線
與曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com