【題目】己知橢圓的離心率為
,點
在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過坐標(biāo)原點的直線交C于P,Q兩點,點P在第一象限,軸,垂足為E,連結(jié)QE并延長交C于點G.
①求證:是直角三角形;
②求面積的最大值.
【答案】(1)(2)①證明見解析;②
【解析】
(1)解方程組即可;
(2)①設(shè)直線PQ的斜率為k.則其方程為,聯(lián)立直線與橢圓方程得到
坐標(biāo),再由QG與橢圓方程聯(lián)立得到G點坐標(biāo),證明斜率乘積等于
即可;②利用兩點間的距離公式算得
的長度,將三角形的面積用k表示,再結(jié)合雙勾函數(shù)的單調(diào)性即可得到答案.
(1)由題意,,
,
,
解得,
所以橢圓的方程為:.
(2)①:設(shè)直線PQ的斜率為k.則其方程為.
由,得
.
記,則
,
,
.
于是直線QG的斜率為,方程為
.
由得
.①
設(shè),則
和
是方程①的解,
故,由此得
.
從而直線PG的斜率為.
所以,即
是直角三角形.
②:由①得,
,
所以的面積
,
又,所以
.
設(shè),則由
得
,當(dāng)且僅當(dāng)
時取等號.
因為,而
在
單調(diào)遞增,
所以當(dāng),即
時,S取得最大值,最大值為
.
因此,面積的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若a=0時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在x=1時取極大值,求實數(shù)a的取值范圍;
(3)設(shè)函數(shù)的零點個數(shù)為m,試求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)中有這樣形狀的曲線:.關(guān)于這種曲線,有以下結(jié)論:
①曲線恰好經(jīng)過9個整點(即橫、縱坐標(biāo)均為整數(shù)的點);
②曲線上任意兩點之間的距離都不超過2;
③曲線所圍成的“花瓣”形狀區(qū)域的面積大于5.
其中正確的結(jié)論有:( )
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知角始邊與
軸的非負(fù)半軸重合,與圓
相交于點
,終邊與圓
相交于點
,點
在
軸上的射影為
,
的面積為
,函數(shù)
的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在
軸上,左右頂點分別是
,以
上的弦
(
異于
)為直徑作圓
恰好過
,設(shè)直線
的斜率為
.
(1)若,且
的面積為
,求
的方程.
(2)若,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線
:
(
為參數(shù)),曲線
:
(
為參數(shù)),且
,點P為曲線
與
的公共點.
(1)求動點P的軌跡方程;
(2)在以原點O為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動點P到直線l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖
,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com