日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】本題滿分12分已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合且兩個(gè)坐標(biāo)系的單位長(zhǎng)度相同已知直線l的參數(shù)方程為t為參數(shù),曲線C的極坐標(biāo)方程為

          若直線l的斜率為-1求直線l與曲線C交點(diǎn)的極坐標(biāo);

          若直線l與曲線C相交弦長(zhǎng)為,求直線l的參數(shù)方程標(biāo)準(zhǔn)形式

          【答案】;

          為參數(shù)為參數(shù)

          【解析】

          試題分析:由直線的參數(shù)方程可知其過定點(diǎn),從而由直線方程的點(diǎn)斜式可得直線的普通方程,將曲線的極坐標(biāo)方程按照極坐標(biāo)和直角坐標(biāo)互化公式將其化為直角坐標(biāo)方程然后將直線方程和曲線方程聯(lián)立求交點(diǎn)的直角作標(biāo),再將其化為極坐標(biāo). (設(shè)出直線的斜率寫出直線方程的直角坐標(biāo)方程,知曲線時(shí)圓心為半徑為的圓先求圓心到直線的距離,再根據(jù)勾股定理可得關(guān)于的方程,從而可求得的值即可知直線的傾斜角,從而可得直線的參數(shù)方程

          試題解析:解:直線的方程:,;(1

          ,(2

          聯(lián)立方程得,;(4

          極坐標(biāo)為;(5

          弦心距,(6

          設(shè)直線l的方程為 ,.(8

          直線為參數(shù)為參數(shù)10

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓經(jīng)過不同的三點(diǎn)在第三象限),線段的中點(diǎn)在直線上.

          (Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

          (Ⅱ)設(shè)點(diǎn)是橢圓上的動(dòng)點(diǎn)(異于點(diǎn)且直線分別交直線兩點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體中, 在線段上運(yùn)動(dòng)且不與 重合,給出下列結(jié)論:

          ;

          平面

          二面角的大小隨點(diǎn)的運(yùn)動(dòng)而變化;

          三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點(diǎn)的運(yùn)動(dòng)而變化;

          其中正確的是(

          A. ①③④ B. ①③

          C. ①②④ D. ①②

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)分別為雙曲線的左、右頂點(diǎn),雙曲線的實(shí)軸長(zhǎng)為,焦點(diǎn)到漸近線的距離為

          (1)求雙曲線的方程;

          (2)已知直線與雙曲線的右支交于兩點(diǎn),且在雙曲線的右支上存在點(diǎn),使,求的值及點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:(x﹣1)2+y2=4
          (1)求過點(diǎn)P(3,3)且與圓C相切的直線l的方程;
          (2)已知直線m:x﹣y+1=0與圓C交于A、B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列 都是單調(diào)遞增數(shù)列,若將這兩個(gè)數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個(gè)新數(shù)列.

          (1)設(shè)數(shù)列、分別為等差、等比數(shù)列,若 , ,求

          (2)設(shè)的首項(xiàng)為1,各項(xiàng)為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項(xiàng)和;

          (3)設(shè)是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對(duì)任意的,在之間數(shù)列的項(xiàng)數(shù)總是?若存在,請(qǐng)給出一個(gè)滿足題意的等差數(shù)列;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿場(chǎng)售價(jià)與上市時(shí)間的關(guān)系如圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系如圖二的拋物線段表示.
          (1)寫出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式p=f(t);寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
          (2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)各種植成本的單位:元/102㎏,時(shí)間單位:天)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合A,集合B,若,則實(shí)數(shù)的取值范圍___________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,M、N、K分別是正方體ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).求證:
          (1)AN∥平面A1MK;
          (2)MK⊥平面A1B1C.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案