日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=a2ln xx2ax,a>0.
          ①求f(x)的單調(diào)區(qū)間;②求所有實數(shù)a,使e-1≤f(x)≤e2x∈[1,e]恒成立.

          f(x)的增區(qū)間為(0,a),減區(qū)間為(a,+∞).②a=e

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知處取得極值,且在點處的切線斜率為.
          ⑴求的單調(diào)增區(qū)間;
          ⑵若關(guān)于的方程在區(qū)間上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若,求曲線在點處的切線方程;
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=,且f(x)的圖象在x=1處與直線y=2相切.
          (1)求函數(shù)f(x)的解析式;
          (2)若P(x0,y0)為f(x)圖象上的任意一點,直線l與f(x)的圖象切于P點,求直線l的斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=lnx-ax(a∈R).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
          (1)求g(x)的解析式;
          (2)設(shè)函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).
          (1)當(dāng)函數(shù)f(x)的圖象在點處的切線的斜率為1時,求函數(shù)f(x)在上的最小值;
          (2)若函數(shù)f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
          (3)在(1)的條件下,過點P(1,-4)作函數(shù)F(x)=x2[f(x)+3lnx-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=lnx+ax+1,a∈R.
          (1)求f(x)在x=1處的切線方程.
          (2)若不等式f(x)≤0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直線ykx是曲線y=ln x的切線,求k.

          查看答案和解析>>

          同步練習(xí)冊答案