日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某重點(diǎn)中學(xué)為了解高一年級(jí)學(xué)生身體發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:cm)頻數(shù)分布表如表1、表2. 表1:男生身高頻數(shù)分布表

          身高(cm)

          [160,165)

          [165,170)

          [170,175)

          [175,180)

          [180,185)

          [185,190)

          頻數(shù)

          2

          5

          14

          13

          4

          2

          表2:女生身高頻數(shù)分布表

          身高(cm)

          [150,155)

          [155,160)

          [160,165)

          [165,170)

          [170,175)

          [175,180)

          頻數(shù)

          1

          7

          12

          6

          3

          1


          (1)求該校高一女生的人數(shù);
          (2)估計(jì)該校學(xué)生身高在[165,180)的概率;
          (3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)X表示身高在[165,180)學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.

          【答案】
          (1)解:設(shè)高一女學(xué)生人數(shù)為x,由表1和2可得樣本中男女生人數(shù)分別為40,30,

          = ,解得x=300.

          因此高一女學(xué)生人數(shù)為300.


          (2)解:由表1和2可得樣本中男女生人數(shù)分別為:5+14+13+6+3+1=42.樣本容量為70.

          ∴樣本中該校學(xué)生身高在[165,180)的概率= =

          估計(jì)該校學(xué)生身高在[165,180)的概率= .(3)由題意可得:X的可能取值為0,1,2.

          由表格可知:女生身高在[165,180)的概率為 .男生身高在[165,180)的概率為


          (3)解:∴P(X=0)= = ,P(X=1)= + = ,P(X=2)= =

          ∴X的分布列為:

          X

          0

          1

          2

          P

          ∴E(X)=0+ + =


          【解析】(1)設(shè)高一女學(xué)生人數(shù)為x,由表1和2可得樣本中男女生人數(shù)分別為40,30,則 = ,解得x.(2)由表1和2可得樣本中男女生人數(shù)分別為:5+14+13+6+3+1=42.樣本容量為70.可得樣本中該校學(xué)生身高在[165,180)的概率= .即估計(jì)該校學(xué)生身高在[165,180)的概率.(3)由題意可得:X的可能取值為0,1,2.由表格可知:女生身高在[165,180)的概率為 .男生身高在[165,180)的概率為 .即可得出X的分布列與數(shù)學(xué)期望.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ﹣2sinθ.
          (1)求C的參數(shù)方程;
          (2)若點(diǎn)A在圓C上,點(diǎn)B(3,0),求AB中點(diǎn)P到原點(diǎn)O的距離平方的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an1xn1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an1)x+an2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入(
          A.v=vx+ai
          B.v=v(x+ai
          C.v=aix+v
          D.v=ai(x+v)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
          (Ⅰ)求證:平面BDEF⊥平面ADE;
          (Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù)f(x)=cos2x圖象向左平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[﹣ , ]上單調(diào)遞減,且函數(shù)g(x)的最大負(fù)零點(diǎn)在區(qū)間(﹣ ,0)上,則φ的取值范圍是(
          A.[ ]
          B.[
          C.( , ]
          D.[ ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實(shí)數(shù)a的取值范圍;
          (Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn). (Ⅰ)求P點(diǎn)的軌跡C的方程;
          (Ⅱ)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對(duì)角線EG,F(xiàn)H過(guò)原點(diǎn)O,若kEGkFH=﹣ ,求證:四邊形EFGH的面積為定值,并求出此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)已知拋物線C:y2=2px的焦點(diǎn)為F1 , 過(guò)F1的直線l與曲線C相交于M,N兩點(diǎn).
          (1)若直線l的傾斜角為60°,且|MN|= ,求p;
          (2)若p=2,橢圓 +y2=1上兩個(gè)點(diǎn)P,Q,滿足:P,Q,F(xiàn)1三點(diǎn)共線且PQ⊥MN,求四邊形PMQN的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知向量 =(sinA, )與 =(3,sinA+ )共線,其中A是△ABC的內(nèi)角.
          (1)求角A的大;
          (2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時(shí)△ABC的形狀.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案