日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣3|
          (1)求函數(shù)f(x)的最小值;
          (2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求實數(shù)t的取值范圍.

          【答案】
          (1)解: f(x)=|x+1|+|x﹣3|表示數(shù)軸上的x對應(yīng)點到﹣1對應(yīng)點和3對應(yīng)點的距離之和,

          可得函數(shù)f(x)的最小值為4,


          (2)解:使{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠,

          知存在x0∈[﹣2,0]使得f(x0)≤t2﹣3t成立,

          即f(x)min≤t2﹣3t在[﹣2,0]成立,

          ∵函數(shù)f(x)在[﹣2,0]的最小值為4,

          ∴t2﹣2t≥4,解得:1﹣ ≤t≤1+


          【解析】(1)由絕對值幾何意義即可求出最小值,(2)問題轉(zhuǎn)f(x)min≤t2﹣3t在[﹣2,0]成立,求出f(x)的最小值,解出t即可
          【考點精析】解答此題的關(guān)鍵在于理解集合的交集運算的相關(guān)知識,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立,以及對函數(shù)的最值及其幾何意義的理解,了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某高級中學(xué)在今年五一期間給校內(nèi)所有教室安裝了同一型號的空調(diào),關(guān)于這批空調(diào)的使用年限單位:年和所支出的維護(hù)費用單位:千元廠家提供的統(tǒng)計資料如表:

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70

          xy之間是線性相關(guān)關(guān)系,請求出維護(hù)費用y關(guān)于x的線性回歸直線方程

          若規(guī)定當(dāng)維護(hù)費用y超過千元時,該批空調(diào)必須報度,試根據(jù)的結(jié)論求該批空調(diào)使用年限的最大值結(jié)果取整數(shù)參考公式:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某手機(jī)賣場對市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取200名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:

          (1)求頻率分布表中的值并補(bǔ)全頻率分布直方圖;

          (2)利用頻率分布直方圖估計被抽查市民的平均年齡

          (3)從年齡在, 的被抽查者中利用分層抽樣選取10人參加華為手機(jī)用戶體驗問卷調(diào)查,再從這10人中選出2人,求這2人在不同的年齡組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓)的離心率是,點在短軸上,且。

          (1)球橢圓的方程;

          (2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函f(x)=x2﹣x+alnx.
          (1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
          (2)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證f(x2)<

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是邊長為的菱形, , 平面 , 是棱上的一個點, , 的中點.

          (1)證明: 平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)Sn是數(shù)列{an}的前n項和,an>0,且
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè) ,Tn=b1+b2+…+bn , 求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M、N分別為AB、PC的中點,且

          (1)求證:平面PAD;

          (2)求證:面PCD;

          (3)若,求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=2x2+bx﹣alnx.
          (1)當(dāng)a=5,b=﹣1時,求f(x)的單調(diào)區(qū)間;
          (2)若對任意b∈[﹣3,﹣2],都存在x∈(1,e2)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案