【題目】如圖,在四棱錐中,底面
是邊長(zhǎng)為
的菱形,
,
平面
,
,
是棱
上的一個(gè)點(diǎn),
,
為
的中點(diǎn).
(1)證明: 平面
;
(2)求直線與平面
所成角的正弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)連接,取
的中點(diǎn)
,所以
,所以
平面
,
平面
,所以平面
平面
,所以
平面
;(2)建立空間直角坐標(biāo)系,求出平面
的法向量,求得線面夾角的正弦值。
試題解析:
(1)證明:連接,設(shè)
,取
的中點(diǎn)
,連接
,
在中,因?yàn)?/span>
分別為
的中點(diǎn),所以
,
又平面
,所以
平面
,
同理,在中,
平面
,
因?yàn)?/span>平面
,所以
平面
.
(2)以為坐標(biāo)原點(diǎn),分別以
所在的直線為
軸,建立如圖所示的空間直角坐標(biāo)系
,
在等邊三角形中,因?yàn)?/span>
,所以
,
因此,
且,
設(shè)平面的一個(gè)法向量為
,
則,取
,得
,
直線與平面
所成的角為
,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付又稱手機(jī)支付
逐漸深入人民群眾的生活
某學(xué)校興趣小組為了了解移動(dòng)支付在人民群眾中的熟知度,對(duì)
歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問(wèn)題是你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有50個(gè)人,把這50個(gè)人按照年齡分成5組,并繪制出頻率分布表
部分?jǐn)?shù)據(jù)模糊不清
如表:
分組 | 頻數(shù) | 頻率 | |
第1組 | 10 | ||
第2組 | |||
第3組 | 15 | ||
第4組 | |||
第5組 | 2 | ||
合計(jì) | 50 |
表中
處的數(shù)據(jù)分別是多少?
從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).
在
抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來(lái)自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)格紙的各小格都是邊長(zhǎng)為1的正方形,圖中粗實(shí)線畫出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正整數(shù),若它的每個(gè)質(zhì)因數(shù)都至少是兩重的(即每個(gè)質(zhì)因數(shù)乘方次數(shù)都不小于2),則稱該正整數(shù)為“漂亮數(shù)”.相鄰兩個(gè)正整數(shù)皆為“漂亮數(shù)”,就稱它們是一對(duì)“孿生漂亮數(shù)”.例如8與9就是一對(duì)“孿生漂亮數(shù)”.請(qǐng)你再找出兩對(duì)“孿生漂亮數(shù)”來(lái).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣3|
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點(diǎn).
(1)求證:BA∥平面PCD;
(2)求證:AP∥平面MBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,離心率為
的橢圓
的左頂點(diǎn)為
,過(guò)原點(diǎn)
的直線(與坐標(biāo)軸不重合)與橢圓
交于
兩點(diǎn),直線
分別與
軸交于
,
兩點(diǎn).若直線
斜率為
時(shí),
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試問(wèn)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)(與直線
的斜率無(wú)關(guān))?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足
且
,則稱函數(shù)
為“
函數(shù)”.
試判斷
是否為“
函數(shù)”,并說(shuō)明理由;
函數(shù)
為“
函數(shù)”,且當(dāng)
時(shí),
,求
的解析式,并寫出在
上的單調(diào)遞增區(qū)間;
在
條件下,當(dāng)
時(shí),關(guān)于
的方程
為常數(shù)
有解,記該方程所有解的和為
,求
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com