日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知AD、BC、EF是一組平行線,截面ABE⊥EF,且AE+BE=BC=2AD=4,G為BC中點(diǎn),二面角A-EF-C為θ.

          (1)當(dāng)θ=90°且AE=2時(shí),證明BD⊥EG.

          (2)(理)若θ=60°,BE=EF=,求二面角DBFC的大小.

          (文)設(shè)AE=x,若sinθ=1(0<x<4),求棱錐F—BCD的體積V(x)的最大值.

          答案:證明:(1)過(guò)點(diǎn)D作DH⊥EF,垂足為H.連結(jié)HB、GH.∵AD∥EH∥BG,且截面ABE⊥EF,∴AD=EH=BG=BE=2.∴四邊形BGHE為菱形.又BE⊥EH,∴四邊形BGHE為正方形.

          ∴EG⊥HB.又DH⊥EF,且θ=90°,∴DH⊥面BCFE.由三垂線定理得BD⊥EG.

          (2)(理)∵截面AEB⊥EF,∴∠AEB即為二面角AEFC的平面角,即∠AEB=60°.∵BE=EF=,∴AE=.∴由余弦定理得AB2=.顯然AE2=BE2+AB2,∴△ABE為直角三角形,即AB⊥BE.又AB⊥EF,∴AB⊥面BCFE.連結(jié)DG,則DG∥AB,∴DG⊥面CBEF.

          作GM⊥BF,垂足為M,連結(jié)DM,則∠DMG為二面角DBFC的平面角.

          ∵BE=EF=,∴BF=.∵S△BGF=BG·BE=BF·MG,∴GM=.∴在△DGM中,tan∠DMG=,即所求的二面角的大小為arctan.

          (注:也可用空間向量求解,步驟略)

          (文)∵截面AEB⊥EF,∴∠AEB即為二面角AEFC的平面角,即∠AEB=θ.又∵AD∥面BFC,

          ∴V(x)=VA—BFC=S△BFC·AEsinθ=··4·(4-x)·x(1-)=x(4-x)2.

          ∴令V′(x)=(3x2-16x+16)=0,得x=.∵0<x<時(shí),V′(x)>0,<x<4時(shí),V′(x)<0,

          ∴x=時(shí),V(x)有最大值,其值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.
          (1)求證:FB=FC;
          (2)求證:FB2=FA•FD;
          (3)若AB是△ABC外接圓的直徑,且∠EAC=120°,BC=6,求AD的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知AD=5,DC=3,BC=4,將直角梯形ABCD繞AB邊所在的直線旋轉(zhuǎn)一周,由此形成的幾何體的體積為
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB、FC.
          (1)求證:FB=FC;
          (2)求證:FB2=FA•FD;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化三模)如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,∠BFA=90°,∠EAC=120°,BC=6cm,則AD的長(zhǎng)=
          4
          3
          4
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•東城區(qū)一模)如圖,已知AD⊥平面ABC,CE⊥平面ABC,F(xiàn)為BC的中點(diǎn),若AB=AC=AD=
          12
          CE

          (Ⅰ)求證:AF∥平面BDE;
          (Ⅱ)求證:平面BDE⊥平面BCE.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案