【題目】設(shè)是正項數(shù)列
的前
項和,且
.
(Ⅰ)求數(shù)列通項公式;
(Ⅱ)是否存在等比數(shù)列,使
對一切正整數(shù)
都成立?并證明你的結(jié)論.
(Ⅲ)設(shè)(
),且數(shù)列
的前
項和為
,試比較
與
的大小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l過點P(﹣2,1),
(1)若直線l與直線x+y﹣1=0平行,求直線l的方程;
(2)若點A(﹣1,﹣2)到直線l的距離為1,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以
為極點,
軸正半軸為極軸建立極坐標(biāo)系,圓
,直線
的極坐標(biāo)方程分別是
,
.
(1)求與
的交點的極坐標(biāo);
(2)設(shè)為
的圓心,
為
與
的交點連線的中點,已知直線
的參數(shù)方程為
(
為參數(shù)),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在
軸上,且橢圓
的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點的直線
與橢圓
交于兩點
,過
作
軸且與橢圓
交于另一點
,
為橢圓
的右焦點,求證:三點
在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知θ為向量 與
的夾角,|
|=2,|
|=1,關(guān)于x的一元二次方程x2﹣|
|x+
=0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+ )的最值及對應(yīng)的θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n .
(1)設(shè)bn= .證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2 +
sinωx﹣
(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是( )
A.(0, ]
B.(0, ]∪[
,1)
C.(0, ]
D.(0, ]∪[
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義某種運算S=ab,運算原理如圖所示,則式子[(2tan )lg
]+[lne(
)﹣1]的值為( )
A.4
B.8
C.10
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個四棱錐底面為正方形,頂點在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時,它的高為( )
A.3
B.2
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com