日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱柱中,,DAB上一點(diǎn),且平面.

          1)求證:;

          2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,求三樓柱的體積.

          【答案】1)見詳解;(2

          【解析】

          1)連接于點(diǎn),連接,利用線面平行的性質(zhì)定理可得,從而可得的中點(diǎn),進(jìn)而可證出

          2)利用面面垂直的性質(zhì)定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質(zhì)可得,進(jìn)而可得棱柱的高為,利用柱體的體積公式即可求解.

          1)連接于點(diǎn),連接,如圖:

          平面,且平面平面,

          所以,由的中點(diǎn),

          所以的中點(diǎn),

          ,

          2)由四邊形是矩形,且平面平面ABC,

          所以平面,即三棱柱為直三棱柱,

          中,,,,

          所以,

          因?yàn)橹本與平面ABC所成角的正切值等于2

          中,,所以.

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在多面體中,底面是菱形,,,.

          (Ⅰ)求證:

          (Ⅱ)若平面平面,求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營(yíng)了來自中國(guó)的小龍蝦,這些小龍蝦標(biāo)有等級(jí)代碼.為得到小龍蝦等級(jí)代碼數(shù)值與銷售單價(jià)之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

          等級(jí)代碼數(shù)值

          38

          48

          58

          68

          78

          88

          銷售單價(jià)(元

          16.8

          18.8

          20.8

          22.8

          24

          25.8

          (1)已知銷售單價(jià)與等級(jí)代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

          (2)若莫斯科某餐廳銷售的中國(guó)小龍蝦的等級(jí)代碼數(shù)值為98,請(qǐng)估計(jì)該等級(jí)的中國(guó)小龍蝦銷售單價(jià)為多少元?

          參考公式:對(duì)一組數(shù)據(jù),,····,其回歸直線的斜率和截距最小二乘估計(jì)分別為:,.

          參考數(shù)據(jù):,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)自然數(shù)。求證:全體不大于n的合數(shù)可重新排列(不一定按原來的大小順序排列),使得每三個(gè)依次相鄰的數(shù)都有大于1的公因數(shù)(例如,當(dāng)時(shí),排列就滿足要求)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).

          (1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;

          (2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).

          (1)求橢圓的方程;

          (2)過點(diǎn)(0,1)的直線與橢圓交于兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對(duì)20株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分植株死亡植株存活兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:mg)進(jìn)行統(tǒng)計(jì).規(guī)定:植株吸收在6mg(包括6mg)以上為足量,否則為不足量”.現(xiàn)對(duì)該20株植株樣本進(jìn)行統(tǒng)計(jì),其中植株存活13株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知植株存活制劑吸收不足量的植株共1.

          編號(hào)

          01

          02

          03

          04

          05

          06

          07

          08

          09

          10

          11

          12

          13

          14

          15

          16

          17

          18

          19

          20

          吸收量(mg)

          6

          8

          3

          8

          9

          5

          6

          6

          2

          7

          7

          5

          10

          6

          7

          8

          8

          4

          6

          9

          1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為植株的存活制劑吸收足量有關(guān)?

          吸收足量

          吸收不足量

          合計(jì)

          植株存活

          1

          植株死亡

          合計(jì)

          20

          2)①若在該樣本吸收不足量的植株中隨機(jī)抽取3株,記植株死亡的數(shù)量,求得分布列和期望

          ②將頻率視為概率,現(xiàn)在對(duì)已知某塊種植了1000株并感染了病毒的該植物試驗(yàn)田里進(jìn)行該藥品噴霧試驗(yàn),設(shè)植株存活吸收足量的數(shù)量為隨機(jī)變量,求.

          參考數(shù)據(jù):,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的半長(zhǎng)軸長(zhǎng)為半徑的圓相切.

          1)求橢圓C的方程;

          2)設(shè)P為橢圓C上一點(diǎn),若過點(diǎn)的直線l與橢圓C相交于不同的兩點(diǎn)ST,滿足O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

          2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案