【題目】如圖,三棱柱中,
,D為AB上一點(diǎn),且
平面
.
(1)求證:;
(2)若四邊形是矩形,且平面
平面ABC,直線
與平面ABC所成角的正切值等于2,
,
,求三樓柱
的體積.
【答案】(1)見詳解;(2)
【解析】
(1)連接交
于點(diǎn)
,連接
,利用線面平行的性質(zhì)定理可得
,從而可得
為
的中點(diǎn),進(jìn)而可證出
(2)利用面面垂直的性質(zhì)定理可得平面
,從而可得三棱柱
為直三棱柱,在
中,根據(jù)等腰三角形的性質(zhì)可得
,進(jìn)而可得棱柱的高為
,利用柱體的體積公式即可求解.
(1)連接交
于點(diǎn)
,連接
,如圖:
由平面
,且平面
平面
,
所以,由
為
的中點(diǎn),
所以為
的中點(diǎn),
又,
(2)由四邊形是矩形,且平面
平面ABC,
所以平面
,即三棱柱
為直三棱柱,
在中,
,
,
,
所以,
因?yàn)橹本與平面ABC所成角的正切值等于2,
在中,
,所以
.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營(yíng)了來自中國(guó)的小龍蝦,這些小龍蝦標(biāo)有等級(jí)代碼.為得到小龍蝦等級(jí)代碼數(shù)值與銷售單價(jià)
之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):
等級(jí)代碼數(shù)值 | 38 | 48 | 58 | 68 | 78 | 88 |
銷售單價(jià) | 16.8 | 18.8 | 20.8 | 22.8 | 24 | 25.8 |
(1)已知銷售單價(jià)與等級(jí)代碼數(shù)值
之間存在線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程(系數(shù)精確到0.1);
(2)若莫斯科某餐廳銷售的中國(guó)小龍蝦的等級(jí)代碼數(shù)值為98,請(qǐng)估計(jì)該等級(jí)的中國(guó)小龍蝦銷售單價(jià)為多少元?
參考公式:對(duì)一組數(shù)據(jù),
,····
,其回歸直線
的斜率和截距最小二乘估計(jì)分別為:
,
.
參考數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)自然數(shù)。求證:全體不大于n的合數(shù)可重新排列(不一定按原來的大小順序排列),使得每三個(gè)依次相鄰的數(shù)都有大于1的公因數(shù)(例如,當(dāng)
時(shí),排列
就滿足要求)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),
的定義域?yàn)?/span>
.當(dāng)
時(shí),
.(e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間
上存在極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的右焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)離心率為
,且滿足
,其中
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)(0,1)的直線與橢圓交于
,
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗
病毒的制劑,現(xiàn)對(duì)20株感染了
病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分“植株死亡”和“植株存活”兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:mg)進(jìn)行統(tǒng)計(jì).規(guī)定:植株吸收在6mg(包括6mg)以上為“足量”,否則為“不足量”.現(xiàn)對(duì)該20株植株樣本進(jìn)行統(tǒng)計(jì),其中 “植株存活”的13株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知“植株存活”但“制劑吸收不足量”的植株共1株.
編號(hào) | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量(mg) | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為“植株的存活”與“制劑吸收足量”有關(guān)?
吸收足量 | 吸收不足量 | 合計(jì) | |
植株存活 | 1 | ||
植株死亡 | |||
合計(jì) | 20 |
(2)①若在該樣本“吸收不足量”的植株中隨機(jī)抽取3株,記為“植株死亡”的數(shù)量,求
得分布列和期望
;
②將頻率視為概率,現(xiàn)在對(duì)已知某塊種植了1000株并感染了病毒的該植物試驗(yàn)田里進(jìn)行該藥品噴霧試驗(yàn),設(shè)“植株存活”且“吸收足量”的數(shù)量為隨機(jī)變量
,求
.
參考數(shù)據(jù):,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(
)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線
與以橢圓C的右焦點(diǎn)為圓心,以橢圓的半長(zhǎng)軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上一點(diǎn),若過點(diǎn)的直線l與橢圓C相交于不同的兩點(diǎn)S和T,滿足
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
時(shí)取得極值,求實(shí)數(shù)
的值;
(2)若對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com