日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某班級有3名同學(xué)報名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有10個數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(23,57),則選擇甲辨題,否則選擇乙辯題.

          1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.

          2)用X、Y分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.

          【答案】1 2)分布列見解析,

          【解析】

          (1)利用互斥事件的概率加法公式求出概率.
          (2)首先明確的所有可能取值及取每個值所對應(yīng)的概率,從而求得分布列,最后代入公式求解數(shù)學(xué)期望即可.

          根據(jù)題意可知,在這10個數(shù)中質(zhì)數(shù)有2、3、5、7.
          則這3名同學(xué)中,每人選擇甲辯題的概率為,選擇乙辯題的概率為.
          3名同學(xué)中恰有(=0,1,2,3)人選擇甲辯題為事件,則.

          (1) 3名同學(xué)中至少有1人選擇甲辯題的概率為:

          (2) 由題意可知的所有可能取值為1,3.

          所以隨機(jī)變量的分布列為:

          1

          3

          隨機(jī)變量的數(shù)學(xué)期望為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,平面,四邊形是矩形,,,分別是棱,的中點.

          (1)求證:平面;

          (2)若,,求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一樓房高米,某廣告公司在樓頂安裝一塊寬米的廣告牌,為拉桿,廣告牌的傾角為,安裝過程中,一身高為米的監(jiān)理人員站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監(jiān)理人員不得站在廣告牌的正下方:設(shè)米,該監(jiān)理人員觀察廣告牌的視角.

          (1)試將表示為的函數(shù);

          (2)求點的位置,使取得最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點,圓,過點的直線與圓交于兩點,線段的中點為不同于),若,則的方程是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy內(nèi),點()在橢圓Ea0,b0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點

          1)求橢圓E的標(biāo)準(zhǔn)方程;

          2)若動直線lx軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標(biāo):若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,己知圓,且圓被直線截得的弦長為2.

          (1)求圓的標(biāo)準(zhǔn)方程;

          (2)若圓的切線軸和軸上的截距相等,求切線的方程;

          (3)若圓上存在點,由點向圓引一條切線,切點為,且滿足,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過的左焦點.

          (1)求的方程;

          (2)直線經(jīng)過的上頂點且交于兩點,直線,分別交于點(異于點),(異于點),證明:直線的斜率為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系.

          1)求曲線和曲線的極坐標(biāo)方程;

          2)射線:依次與曲線和曲線交于、兩點,射線:依次與曲線和曲線交于、兩點,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.

          1)求橢圓的方程;

          2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由;

          3)若,交橢圓于點,求的范圍.

          查看答案和解析>>

          同步練習(xí)冊答案