【題目】已知: 、
、
是同一平面上的三個向量,其中
=(1,2).
(1)若| |=2
,且
∥
,求
的坐標(biāo).
(2)若| |=
,且
+2
與2
﹣
垂直,求
與
的夾角θ
【答案】
(1)解:設(shè)
∵ ∥
且|
|=2
∴ ,
∴x=±2
∴ =(2,4)或
=(﹣2,﹣4)
(2)解:∵( +2
)⊥(2
﹣
)
∴( +2
)(2
﹣
)=0
∴2 2+3
﹣2
2=0
∴2| |2+3|
||
|cosθ﹣2|
|2=0
∴2×5+3× ×
cosθ﹣2×
=0
∴cosθ=﹣1
∴θ=π+2kπ
∵θ∈[0,π]
∴θ=π
【解析】(1)設(shè)出 的坐標(biāo),利用它與
平行以及它的模等于2
,待定系數(shù)法求出
的坐標(biāo).(2)由
+2
與2
﹣
垂直,數(shù)量積等于0,求出夾角θ的余弦值,再利用夾角θ的范圍,求出此角的大小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 曲線
的參數(shù)方程為
為參數(shù)) ;在以原點
為極點,
軸的正半軸為極軸的極坐標(biāo)系中, 曲線
的極坐標(biāo)參數(shù)方程為
.
(1)求曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線與曲線
,
的交點分別為
(
異于原點). 當(dāng)斜率
時, 求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C方程為 (a>b>0),左、右焦點分別是F1 , F2 , 若橢圓C上的點P(1,
)到F1 , F2的距離和等于4. (Ⅰ)寫出橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點Q是橢圓C的動點,求線段F1Q中點T的軌跡方程;
(Ⅲ)直線l過定點M(0,2),且與橢圓C交于不同的兩點A,B,若∠AOB為銳角(O為坐標(biāo)原點),求直線l的斜率k0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y﹣4=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m;
(3)在(2)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,
的中點為
,且
,點
在
的延長線上,且
.固定邊
,在平面內(nèi)移動頂點
,使得圓
與邊
,邊
的延長線相切,并始終與
的延長線相切于點
,記頂點
的軌跡為曲線
.以
所在直線為
軸,
為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)動直線交曲線
于
兩點,且以
為直徑的圓經(jīng)過點
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為( )
A.①②
B.③④
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,半徑為
的圓
與
相切,圓心
在
軸上且在直線
的上方.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點的直線與圓
交于
兩點(
在
軸上方),問在
軸正半軸上是否存在點
,使得
軸平分
?若存在,請求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( )
·(1)y=﹣|x|(x∈R)(2)y=﹣x3﹣x(x∈R)(3)y=( )x(x∈R)(4)y=﹣x+
.
A.(2)
B.(1)(3)
C.(4)
D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王創(chuàng)建了一個由他和甲、乙、丙共4人組成的微信群,并向該群發(fā)紅包,每次發(fā)紅包的個數(shù)為1個(小王自己不搶),假設(shè)甲、乙、丙3人每次搶得紅包的概率相同.
(Ⅰ)若小王發(fā)2次紅包,求甲恰有1次搶得紅包的概率;
(Ⅱ)若小王發(fā)3次紅包,其中第1,2次,每次發(fā)5元的紅包,第3次發(fā)10元的紅包,記乙搶得所有紅包的錢數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com