日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,平行四邊形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).
          (1)求證:GH∥平面CDE;
          (2)求證:BD⊥平面CDE.
          【答案】分析:(1)欲證GH∥平面CDE,根據(jù)直線與平面平行的判定定理可知只需證GH與平面CDE內(nèi)一直線平行,而G是AE,DF的交點(diǎn),G是AE中點(diǎn),又H是BE的中點(diǎn),則GH∥AB,而AB∥CD,則GH∥CD,CD?平面CDE,GH?平面CDE,滿足定理所需條件.
          (2)欲證BD⊥平面CDE,根據(jù)直線與平面垂直的判定定理可知只需證BD與平面CDE內(nèi)兩相交直線垂直,根據(jù)平面ADEF⊥平面ABCD,交線為AD,ED⊥AD,ED?平面ADEF,則ED⊥平面ABCD,從而ED⊥BD,BD⊥CD,CD∩ED=D,滿足定理所需條件.
          解答:證明:(1)G是AE,DF的交點(diǎn),∴G是AE中點(diǎn),又H是BE的中點(diǎn),
          ∴△EAB中,GH∥AB,(3分)∵AB∥CD,∴GH∥CD,
          又∵CD?平面CDE,GH?平面CDE
          ∴GH∥平面CDE(7分)
          (2)平面ADEF⊥平面ABCD,交線為AD,
          ∵ED⊥AD,ED?平面ADEF
          ∴ED⊥平面ABCD,(10分)
          ∴ED⊥BD,
          又∵BD⊥CD,CD∩ED=D
          ∴BD⊥平面CDE.(14分)
          點(diǎn)評(píng):本題主要考查線面平行的判定定理和線面垂直的判定定理.考查對(duì)基礎(chǔ)知識(shí)的綜合應(yīng)用能力和基本定理的掌握能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,過(guò)點(diǎn)O的直線交AD于E,BC于F,交AB延長(zhǎng)線于G,已知AB=a,BC=b,BG=c,則BF=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,平行四邊形ABCD中,∠DAB=60°,AB=2,AD=4將△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.
          (I)求證:AB⊥DE
          (Ⅱ)求三棱錐E-ABD的側(cè)面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,平行四邊形ABCD中,E,F(xiàn)分別是BC,DC的中點(diǎn),G為交點(diǎn),若
          AB
          =
          a
          AD
          =
          b
          ,試以
          a
          ,
          b
          為基底表示
          CG
          =
          -
          1
          3
          (
          a
          +
          b
          )
          -
          1
          3
          (
          a
          +
          b
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•棗莊一模)如圖,平行四邊形ABCD中,點(diǎn)E是邊BC(靠近點(diǎn)B)的三等分點(diǎn),F(xiàn)是AB(靠近點(diǎn)A)的三等分點(diǎn),P是AE與DF的交點(diǎn),則
          AP
          AB
          AD
          表示為
          AP
          =
          3
          10
          AB
          +
          1
          10
          AD
          AP
          =
          3
          10
          AB
          +
          1
          10
          AD

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,平行四邊形ABCD中,
          AB
          =
          a
          ,
          AD
          =
          b
          CE
          =
          1
          3
          CB
          ,
          CF
          =
          2
          3
          CD

          (1)用
          a
          ,
          b
          表示
          EF
          ;
          (2)若|
          a
          |=1
          ,|
          b
          |=4
          ,∠DAB=60°,分別求|
          EF
          |
          AC
          FE
          的值.

          查看答案和解析>>