【題目】在平面直角坐標(biāo)系中,曲線
過點(diǎn)
,其參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)求已知曲線和曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
【答案】(1),
;(2)
或
.
【解析】試題分析:(1)對(duì)曲線進(jìn)行消參即可得曲線
的普通方程,根據(jù)
和
將曲線
化為直角坐標(biāo)方程;(2)將曲線
的參數(shù)方程代入曲線
,根據(jù)參數(shù)方程的幾何意義可知
,
| |,利用
,分類討論,即可求實(shí)數(shù)
的值.
試題解析:(1)的參數(shù)方程
,消參得普通方程為
,
的極坐標(biāo)方程為
兩邊同乘
得
即
;
(2)將曲線的參數(shù)方程
(
為參數(shù),
)代入曲線
得
,由
,得
,
設(shè)對(duì)應(yīng)的參數(shù)為
,由題意得
即
或
,
當(dāng)時(shí),
,解得
,
當(dāng)時(shí),
解得
,
綜上:或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
且
.
(1)若函數(shù)是奇函數(shù),試證明:對(duì)任意的
,恒有
;
(2)若對(duì)于,函數(shù)
在區(qū)間
上的最大值是3,試求實(shí)數(shù)
的值;
(3)設(shè)且
,問:是否存在實(shí)數(shù)
,使得對(duì)任意的
,都有
?如果存在,請(qǐng)求出
的取值范圍;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件
為“朝上的2個(gè)數(shù)均為偶數(shù)”,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),且f(2)=
.
(1)求實(shí)數(shù)m和n的值;
(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市疾控中心流感監(jiān)測(cè)結(jié)果顯示,自年
月起,該市流感活動(dòng)一度出現(xiàn)上升趨勢(shì),尤其是
月以來,呈現(xiàn)快速增長(zhǎng)態(tài)勢(shì),截止目前流感病毒活動(dòng)度仍處于較高水平,為了預(yù)防感冒快速擴(kuò)散,某校醫(yī)務(wù)室采取積極方式,對(duì)感染者進(jìn)行短暫隔離直到康復(fù).假設(shè)某班級(jí)已知
位同學(xué)中有
位同學(xué)被感染,需要通過化驗(yàn)血液來確定感染的同學(xué),血液化驗(yàn)結(jié)果呈陽性即為感染,呈陰性即未被感染.下面是兩種化驗(yàn)方法: 方案甲:逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;
方案乙:先任取個(gè)同學(xué),將它們的血液混在一起化驗(yàn),若結(jié)果呈陽性則表明感染同學(xué)為這
位中的
位,后再逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;若結(jié)果呈陰性則在另外
位同學(xué)中逐個(gè)檢測(cè);
(1)求依方案甲所需化驗(yàn)次數(shù)等于方案乙所需化驗(yàn)次數(shù)的概率;
(2)表示依方案甲所需化驗(yàn)次數(shù),
表示依方案乙所需化驗(yàn)次數(shù),假設(shè)每次化驗(yàn)的費(fèi)用都相同,請(qǐng)從經(jīng)濟(jì)角度考慮那種化驗(yàn)方案最佳.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形中,點(diǎn)
,
分別為邊
,
的中點(diǎn),將
沿
所在直線進(jìn)行翻折,將
沿
所在直線進(jìn)行翻折,在翻折的過程中,
①點(diǎn)與點(diǎn)
在某一位置可能重合;②點(diǎn)
與點(diǎn)
的最大距離為
;
③直線與直線
可能垂直; ④直線
與直線
可能垂直.
以上說法正確的個(gè)數(shù)為( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象所有點(diǎn)向右平移
個(gè)單位,再縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大到原來的
倍,得到函數(shù)
的圖象.
(1)求的解析式;
(2)在區(qū)間上
是否存在的對(duì)稱軸?若存在,求出,若不存在說明理由?
(3)令,若
滿足
,且
的終邊不共線,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)口袋中裝有n個(gè)紅球(n≥1且n∈N+)和2個(gè)白球,從中有放回地連續(xù)摸三次,每次摸出2個(gè)球,若2個(gè)球顏色不同則為中獎(jiǎng),否則不中獎(jiǎng).
(1)當(dāng)n=3時(shí),設(shè)三次摸球中中獎(jiǎng)的次數(shù)為X,求隨機(jī)變量X的分布列;
(2)記三次摸球中恰有兩次中獎(jiǎng)的概率為P,求當(dāng)n取多少時(shí),P的值最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com