【題目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在區(qū)間(﹣1,1)內為減函數,求實數a的取值范圍;
(Ⅱ)對于實數a的不同取值,試討論y=f(x)在(﹣1,1)內的極值點的個數.
【答案】解:(Ⅰ)對函數g(x)求導得,f'(x)=2x2﹣4ax﹣3, ∵f(x)在區(qū)間(﹣1,1)內為減函數,
∴f'(x)≤0在x∈(﹣1,1)上恒成立,
結合二次函數的圖象和性質,
問題等價為: ,即
,
解得﹣ ≤a≤
,
∴實數a的取值范圍為[﹣ ,
],
(Ⅱ)當a<﹣ 時,f′(﹣1)=4a﹣1<0,f′(1)=﹣4a﹣1>0
∴f(x)在(﹣1,1)內有且只有一個極小值點,
當a> 時,f′(﹣1)=4a﹣1>0,f′(1)=﹣4a﹣1<0,
∴f(x)在(﹣1,1)內有且只有一個極大值點,
當﹣ ≤a≤
時,由(Ⅰ)可知在區(qū)間(﹣1,1)上為減函數,
∴f(x)在區(qū)間(﹣1,1)內沒有極值點.
綜上可知,當a<﹣ 或a>
時,函數在區(qū)間(﹣1,1)內的極值點個數為1;當﹣
≤a≤
時,在區(qū)間(﹣1,1)內的極值點個數為0
【解析】(Ⅰ)先求出導函數,根據題意問題等價為g'(x)≤0在x∈(﹣1,1)上恒成立,再根據二次函數的性質轉化為: ,解出即可,(Ⅱ)分類討論.利用導數的正負,即可得出y=f(x)在(﹣1,1)內的極值點的個數.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果
,那么函數
在這個區(qū)間單調遞增;(2)如果
,那么函數
在這個區(qū)間單調遞減,以及對函數的極值與導數的理解,了解求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的離心率為
,圓心在
軸的正半軸上的圓
與雙曲線的漸近線相切,且圓
的半徑為2,則以圓
的圓心為焦點的拋物線的標準方程為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在x∈[ ,2]上,函數f(x)=x2+px+q與g(x)=
+
在同一點取得相同的最小值,那么f(x)在x∈[
,2]上的最大值是( )
A.
B.4
C.8
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知Sn是等差數列{an}的前n項和,公差為d,且S2015>S2016>S2014 , 下列五個命題:①d>0;②S4029>0;③S4030<0;④數列{Sn}中的最大項為S2015;⑤|a2015|>|a2016|.
其中正確結論的序號是 . (寫出所有正結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn , 等比數列{bn}的各項均為正數,滿足:a1=b1=1,a5=b3 , 且S3=9.
(1)求數列{an}和{bn}的通項公式;
(2)求 +
+…+
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com