日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)點(diǎn)為橢圓內(nèi)的一定點(diǎn),過P點(diǎn)引一直線,與橢圓相交于兩點(diǎn),且P恰好為弦AB的中點(diǎn),如圖所示,求弦AB所在的直線方程及弦AB的長度。

          試題分析:由于A,B兩點(diǎn)是直線與橢圓的交點(diǎn),故他們應(yīng)滿足橢圓方程,設(shè)出它們的坐標(biāo),然后根據(jù)它們的中點(diǎn)為M,可將坐標(biāo)間的關(guān)系轉(zhuǎn)化為求直線l的斜率,然后再由點(diǎn)斜式求出直線方程.利用兩點(diǎn)距離公式得到弦的長度的求解。
          解:設(shè)直線與橢圓交于,則…①且…②
          ②-①得,即
          ∴所求直線方程為:,即
          將其代入橢圓方程整理得,,根據(jù)弦長公式有
          。
          點(diǎn)評(píng):解決該試題的關(guān)鍵是求直線方程時(shí),應(yīng)先選擇適當(dāng)?shù)闹本方程的形式,并注意各種形式的適用條件,用斜截式及點(diǎn)斜式時(shí),直線的斜率必須存在,而兩點(diǎn)式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點(diǎn)的直線,故在解題時(shí),若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點(diǎn)斜式,應(yīng)先考慮斜率不存在的情況.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,F(xiàn)1,F2分別是橢圓 (a>0,b>0)的兩個(gè)焦點(diǎn),A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該左半橢圓的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則橢圓的離心率為(    )
          A.B.C.D.-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          橢圓的焦點(diǎn)在軸上,長軸長是短軸長的兩倍,則m的值為 (    )
          A.     B.     C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知F1,F(xiàn)2為雙曲線C:的左右焦點(diǎn),點(diǎn)P在C上, ,則( )
          A.2B.4C. 6D. 8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)P是雙曲線與圓在第一象限的交點(diǎn),分別是雙曲線的左右焦點(diǎn),且則雙曲線的離心率為(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          對任意的實(shí)數(shù)m,直線y=mx+b與橢圓x2+4y2=1恒有公共點(diǎn),則b的取值范圍是  ( 。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知曲線C: 與拋物線的一個(gè)交點(diǎn)為M,為拋物線的焦點(diǎn),若,則b的值為
          A.B.-C.D.-

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          焦點(diǎn)在x軸上雙曲線的一條漸近線方程為,焦距為,這雙曲線的方程為___

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分13分)在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三頂點(diǎn)的距離分別為,且滿足,求點(diǎn)的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊答案