日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,已知拋物線,設(shè)點,,為拋物線上的動點(異于頂點),連結(jié)并延長交拋物線于點,連結(jié)并分別延長交拋物線于點、,連結(jié),設(shè)、的斜率存在且分別為、.

          (1)若,,求;
          (2)是否存在與無關(guān)的常數(shù),是的恒成立,若存在,請將表示出來;若不存在請說明理由.
          (1)2;(2).

          試題分析:(1)依題意求直線的方程,設(shè)兩點的坐標(biāo)分別為,聯(lián)立方程組消去得到關(guān)于的方程,由韋達定理求出
          ,在根據(jù)弦長公式求解;(2)設(shè)求直線的方程代入拋物線方程,消去得到關(guān)于的方程,找到的關(guān)系是,用表示點的坐標(biāo),同理用表示點的坐標(biāo),由于三點共線,找到的關(guān)系,最后用斜率公式求,整理即得.
          試題解析:(1)直線,設(shè)





                     4分
          (2)設(shè)
          則直線的方程為:,代入拋物線方程
          整理得,
          ,即
          從而,故點
          同理,點          8分
          三點共線



          整理得
          所以,

                             13分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,已知點,是動點,且的三邊所在直線的斜率滿足
          (1)求點的軌跡的方程;
          (2)若是軌跡上異于點的一個點,且,直線交于點,問:是否存在點,使得的面積滿足?若存在,求出點的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.

          (Ⅰ) 求橢圓的方程;
          (Ⅱ) 若圓的圓心為(),且經(jīng)過、,是橢圓上的動點且在圓外,過作圓的切線,切點為,當(dāng)的最大值為時,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,已知點及直線,曲線是滿足下列兩個條件的動點的軌跡:①其中到直線的距離;②
          (1) 求曲線的方程;
          (2) 若存在直線與曲線、橢圓均相切于同一點,求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準(zhǔn)線的距離為

          (1)求拋物線的方程;
          (2)當(dāng)的角平分線垂直軸時,求直線的斜率;
          (3)若直線軸上的截距為,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)已知中心在原點的橢圓的離心率,一條準(zhǔn)線方程為
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若以>0)為斜率的直線與橢圓相交于兩個不同的點,且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          )如圖,橢圓,、、為橢圓的頂點

          (Ⅰ)若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓方程;
          (Ⅱ)已知:直線相交于,兩點(不是橢圓的左右頂點),并滿足 試研究:直線是否過定點? 若過定點,請求出定點坐標(biāo),若不過定點,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          過橢圓的左頂點的斜率為的直線交橢圓于另一個點,且點軸上的射影恰好為右焦點,若,則橢圓離心率的取值范圍是_____________.

          查看答案和解析>>

          同步練習(xí)冊答案