【題目】如圖,四樓錐中,平面
平面
,底面
為梯形.
,且
與
均為正三角形.
為
的中點(diǎn)
為
重心,
與
相交于點(diǎn)
.
(1)求證: 平面
;
(2)求三棱錐的體積.
【答案】(1)見解析(2)
【解析】試題分析:(1)第(1)問,連交
于
,連接
.證明
//
,即證
平面
. (2)第(2)問,主要是利用體積變換,
,求得三棱錐
的體積.
試題解析:
(1)方法一:連交
于
,連接
.
由梯形,
且
,知
又為
的中點(diǎn),
為
的重心,∴
在中,
,故
//
.
又平面
,
平面
,∴
平面
.
方法二:過作
交PD于N,過F作FM||AD交CD于M,連接MN,
G為△PAD的重心,
又ABCD為梯形,AB||CD,
又由所作GN||AD,FM||AD,得//
,所以GNMF為平行四邊形.
因?yàn)镚F||MN,
(2) 方法一:由平面平面
,
與
均為正三角形,
為
的中點(diǎn)
∴,
,得
平面
,且
由(1)知//平面
,∴
又由梯形ABCD,AB||CD,且,知
又為正三角形,得
,∴
,
得
∴三棱錐的體積為
.
方法二: 由平面平面
,
與
均為正三角形,
為
的中點(diǎn)
∴,
,得
平面
,且
由,∴
而又為正三角形,得
,得
.
∴,
∴三棱錐的體積為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ2=.
(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若P(x,y)是曲線C上的一個動點(diǎn),求3x+4y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:①若
,則
;②
的圖象關(guān)于點(diǎn)
對稱;③函數(shù)
在
上單調(diào)遞增;④
的圖象向右平移
個單位長度后所得圖象關(guān)于
軸對稱.其中所有正確結(jié)論的編號是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>個組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()
A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位:
)和年利潤
(單位:千元)的影響,對近
年的宣傳費(fèi)
,和年銷售量
的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,表中
(Ⅰ)根據(jù)散點(diǎn)圖判斷,與
,哪一個宜作為年銷售量
關(guān)于年宣傳費(fèi)
的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤與
,
的關(guān)系為
,根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(1)當(dāng)年宣傳費(fèi)時,年銷售量及年利潤的預(yù)報(bào)值時多少?
(2)當(dāng)年宣傳費(fèi)為何值時,年利潤的預(yù)報(bào)值最大?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與
軸交于點(diǎn)
,過點(diǎn)
作圓
的兩條切線,切點(diǎn)為
,且
.
(1)求拋物線的方程;
(2)若直線是過定點(diǎn)
的一條直線,且與拋物線
交于
兩點(diǎn),過定點(diǎn)
作
的垂線與拋物線交于
兩點(diǎn),求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會,每人均獲得砸一顆金蛋的機(jī)會.游戲開始前,甲、乙、丙、丁四位同學(xué)對游戲中獎結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:
甲說:“我或乙能中獎”; 乙說:“丁能中獎”;
丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.
游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎,且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎的同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶市推行“共享吉利博瑞車”服務(wù),租用該車按行駛里程加用車時間收費(fèi),標(biāo)準(zhǔn)是“1元/公里0.2元/分鐘”.剛在重慶參加工作的小劉擬租用“共享吉利博瑞車”上下班,同單位的鄰居老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾開車上下班總共也需花費(fèi)大約1小時”,并將自己近50天的往返開車的花費(fèi)時間情況統(tǒng)計(jì)如表:
將老李統(tǒng)計(jì)的各時間段頻率視為相應(yīng)概率,假定往返的路程不變,而且每次路上開車花費(fèi)時間視為用車時間.
(1)試估計(jì)小劉每天平均支付的租車費(fèi)用(每個時間段以中點(diǎn)時間計(jì)算);
(2)小劉認(rèn)為只要上下班開車總用時不超過45分鐘,租用“共享吉利博瑞車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有天為“最優(yōu)選擇”,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若數(shù)列滿足
,
,記
的前
項(xiàng)和為
,求證:
.
【答案】(I);(II)
;(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(Ⅱ)當(dāng)
時,因?yàn)?/span>
,所以
顯然不成立,先證明因此
時,
在
上恒成立,再證明當(dāng)
時不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前
項(xiàng)和為
,結(jié)合(II)可得
,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得
.所以
令,解得
或
(舍去),所以函數(shù)
的單調(diào)遞減區(qū)間為
.
(Ⅱ)由得,
當(dāng)時,因?yàn)?/span>
,所以
顯然不成立,因此
.
令,則
,令
,得
.
當(dāng)時,
,
,∴
,所以
,即有
.
因此時,
在
上恒成立.
②當(dāng)時,
,
在
上為減函數(shù),在
上為增函數(shù),
∴,不滿足題意.
綜上,不等式在
上恒成立時,實(shí)數(shù)
的取值范圍是
.
(III)證明:由知數(shù)列
是
的等差數(shù)列,所以
所以
由(Ⅱ)得, 在
上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因?yàn)?/span>
所以
所以.
【題型】解答題
【/span>結(jié)束】
22
【題目】已知直線, (
為參數(shù),
為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的直角坐標(biāo)方程為
.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為
,直線
與曲線
的交點(diǎn)為
、
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com