設(shè)函數(shù),
(1)求函數(shù)的極大值;
(2)記的導(dǎo)函數(shù)為
,若
時(shí),恒有
成立,試確定實(shí)數(shù)
的取值范圍.
(1);(2)
.
解析試題分析:(1)由導(dǎo)函數(shù)或
求得函數(shù)的單調(diào)區(qū)間,再找極大值;(2)
的導(dǎo)函數(shù)
是一元二次函數(shù),轉(zhuǎn)化為一元二次函數(shù)在
上的最值,再滿足
條件即可.
試題解析:(1)令,且
當(dāng)時(shí),得
;當(dāng)
時(shí),得
或
∴的單調(diào)遞增區(qū)間為
;
的單調(diào)遞減區(qū)間為
和
,
故當(dāng)時(shí),
有極大值,其極大值為
6分
(2)∵ 7分
①當(dāng)時(shí),
,∴
在區(qū)間
內(nèi)單調(diào)遞減
∴,且
∵恒有成立
∵又
,此時(shí),
10分
②當(dāng)時(shí),
,得
因?yàn)楹阌?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/0/1k8cl2.png" style="vertical-align:middle;" />成立,所以 ,即
,又
得, 14分
綜上可知,實(shí)數(shù)的取值范圍
. 15分
考點(diǎn):1.函數(shù)的極值;2.一元二次函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù) (
).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù)(
)的單調(diào)性證明:當(dāng)
時(shí),
;
(Ⅲ)證明:當(dāng),且
均為正實(shí)數(shù),
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-
alnx,a∈R.
(Ⅰ)當(dāng)f(x)存在最小值時(shí),求其最小值φ(a)的解析式;
(Ⅱ)對(duì)(Ⅰ)中的φ(a),
(。┊(dāng)a∈(0,+∞)時(shí),證明:φ(a)≤1;
(ⅱ)當(dāng)a>0,b>0時(shí),證明:φ′()≤
≤φ′(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若恒成立,求
的取值范圍.
注:是自然對(duì)數(shù)的底數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,且函數(shù)
在點(diǎn)
處的切線方程為
.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點(diǎn),當(dāng)
時(shí),直線
的斜率恒小于
,試求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的極大值.
(Ⅱ)求證:存在,使
;
(Ⅲ)對(duì)于函數(shù)與
定義域內(nèi)的任意實(shí)數(shù)x,若存在常數(shù)k,b,使得
和
都成立,則稱直線
為函數(shù)
與
的分界線.試探究函數(shù)
與
是否存在“分界線”?若存在,請(qǐng)給予證明,并求出k,b的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必寫出推理過程,只要求寫出結(jié)果)
(3)在(2)的條件下,已知函數(shù)若對(duì)于任意的
,恒有
成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com