【題目】已知函數(shù),其中
,設
為
導函數(shù).
(Ⅰ)設,若
恒成立,求
的范圍;
(Ⅱ)設函數(shù)的零點為
,函數(shù)
的極小值點為
,當
時,求證:
.
【答案】(1)(2)見解析
【解析】
(I)計算的導函數(shù),計算
最小值,結(jié)合恒不等式,建立不等關系,計算a的范圍,即可。(II)構(gòu)造函數(shù)
,判定極小值點,進而得到
的單調(diào)性,得到
,結(jié)合單調(diào)性,即可。
(Ⅰ)由題設知,,
,
.
當時,
,
在區(qū)間
上單調(diào)遞減,
當時,
,
在區(qū)間
上單調(diào)遞增,
故在
處取到最小值,且
.
由于恒成立,所以
.
(Ⅱ)設,則
.
設,則
,
故在
上單調(diào)遞增.
因為,所以
,
,
故存在,使得
,
則在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
故是
的極小值點,因此
.
由(Ⅰ)可知,當時,
.
因此
,即
單調(diào)遞增.
由于,即
,即
,
所以
.
又由(Ⅰ)可知,在
單調(diào)遞增,因此
.
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓:
的離心率為
,橢圓
上一點
到左右兩個焦點
、
的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓
交于
、
兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,過
且與
軸垂直的直線被橢圓
和圓
截得的弦長分別為2和
.
(1)求的標準方程;
(2)已知動直線與拋物線
:
相切(切點異于原點),且
與橢圓
相交于
,
兩點,問:橢圓
上是否存在點
,使得
,若存在求出滿足條件的所有
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.對具有線性相關關系的變量有一組觀測數(shù)據(jù)
,其線性回歸方程是
,且
,則實數(shù)
的值是
B.正態(tài)分布在區(qū)間
和
上取值的概率相等
C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1
D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①;
②;
③;
④;
⑤;
(1)試從上述五個式子中選擇一個,求出這個常數(shù);
(2)根據(jù)(1)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2019·清遠期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度
有關,現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù) | 5 | 20 | 100 | 325 |
(1)根據(jù)散點圖判斷與
哪一個更適宜作為產(chǎn)卵數(shù)
關于溫度
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關于
的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,
,
,
,
,
,
,
,
,
,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為
的菱形,
,點
是棱
的中點,
,點
在平面
的射影為
,
為棱
上一點,
(Ⅰ)求證:平面平面
;
(Ⅱ)若為棱
的中點,
,求直線
與平面
所成角的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com