日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】郴州某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶6元,售價(jià)每瓶8元,未售出的飲料降價(jià)處理,以每瓶3元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

          最高氣溫

          ,

          ,

          ,

          ,

          ,

          天數(shù)

          2

          16

          36

          25

          7

          4

          以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

          1)求六月份這種飲料一天的需求量X(單位:瓶)的分布列;

          2)設(shè)六月份一天銷(xiāo)售這種飲料的利潤(rùn)為Y(單位:元),當(dāng)六月份這種飲料一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?

          【答案】2)詳見(jiàn)解析;(2時(shí),的數(shù)學(xué)期望達(dá)到最大值,最大值為元.

          【解析】

          1)由題意知的可能取值為200,300,500,分別求出相應(yīng)的概率,由此能求出的分布列.

          2)由題意知這種酸奶一天的需求量至多為500瓶,至少為200瓶,只需考慮,根據(jù)分類(lèi)討論,能得到當(dāng)時(shí),最大值為520元.

          解:(1)由題意知的可能取值為200,300500,

          ,

          ,

          的分布列為:

          200

          300

          500

          0.2

          0.4

          0.4

          2)由題意知這種酸奶一天的需求量至多為500瓶,至少為200瓶,

          只需考慮,

          當(dāng)時(shí),

          若最高氣溫不低于25,則;

          若最高氣溫位于區(qū)間,,則;

          若最高氣溫低于20,則

          ,

          當(dāng)時(shí),

          若最高氣溫不低于20,則,

          若最高氣溫低于20,則

          時(shí),的數(shù)學(xué)期望達(dá)到最大值,最大值為元.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中,正確的個(gè)數(shù)是(

          ①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;

          為異面直線,則過(guò)且與平行的平面有且僅有一個(gè);

          ③直四棱柱是直平行六面體;

          ④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.

          A.0B.1C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)在“精準(zhǔn)扶貧”行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷(xiāo)售.現(xiàn)有8輛甲型車(chē)和4輛乙型車(chē),甲型車(chē)每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車(chē)每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車(chē)每天費(fèi)用320元,乙型車(chē)每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖?chē)站,則通過(guò)合理調(diào)配車(chē)輛運(yùn)送這批水果的費(fèi)用最少為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),.

          (1)若在區(qū)間上恒成立,求a的取值范圍.

          (2)對(duì)任意,總存在唯一的,使得成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為,其中,且

          1)求證:,并由推導(dǎo)的值;

          2)若數(shù)列共有項(xiàng),前項(xiàng)的和為,其后的項(xiàng)的和為,再其后的項(xiàng)的和為,求的比值.

          3)若數(shù)列的前項(xiàng),前項(xiàng)、前項(xiàng)的和分別為,試用含字母的式子來(lái)表示(即,且不含字母

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義符號(hào)函數(shù),已知函數(shù).

          1)已知,求實(shí)數(shù)的取值集合;

          2)當(dāng)時(shí),在區(qū)間上有唯一零點(diǎn),求的取值集合;

          3)已知上的最小值為,求正實(shí)數(shù)的取值集合;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】孔子曰:溫故而知新.數(shù)學(xué)學(xué)科的學(xué)習(xí)也是如此.為了調(diào)查數(shù)學(xué)成績(jī)與及時(shí)復(fù)習(xí)之間的關(guān)系,某校志愿者展開(kāi)了積極的調(diào)查活動(dòng):從高三年級(jí)640名學(xué)生中按系統(tǒng)抽樣抽取40名學(xué)生進(jìn)行問(wèn)卷調(diào)查,所得信息如下:

          數(shù)學(xué)成績(jī)優(yōu)秀(人數(shù))

          數(shù)學(xué)成績(jī)合格(人數(shù))

          及時(shí)復(fù)習(xí)(人數(shù))

          20

          4

          不及時(shí)復(fù)習(xí)(人數(shù))

          10

          6

          1)張軍是640名學(xué)生中的一名,他被抽中進(jìn)行問(wèn)卷調(diào)查的概率是多少(用分?jǐn)?shù)作答);

          2)根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)的基本思想,研究數(shù)學(xué)成績(jī)與及時(shí)復(fù)習(xí)的相關(guān)性.

          參考公式:,其中為樣本容量

          臨界值表:

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使得上的奇函數(shù),則稱(chēng)是位差值為的“位差奇函數(shù)”.

          1)判斷函數(shù)是否為位差奇函數(shù)?說(shuō)明理由;

          2)若是位差值為的位差奇函數(shù),求的值;

          3)若對(duì)任意屬于區(qū)間中的都不是位差奇函數(shù),求實(shí)數(shù)滿足的條件.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案