日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當時,,若有三個零點,則實數(shù)的取值集合是(

          A.,B.,

          C.,D.

          【答案】C

          【解析】

          由條件可推得函數(shù)是以4為周期的周期函數(shù),且圖象關于直線對稱,關于原點對稱,作出函數(shù)與函數(shù)的圖象,結合圖象即可得實數(shù)的范圍.

          由已知得,

          ,所以函數(shù)的圖象關于直線對稱,關于原點對稱,又,

          進而有,所以得函數(shù)是以4為周期的周期函數(shù),

          有三個零點可知函數(shù)與函數(shù)的圖象有三個交點,

          當直線與函數(shù)圖象在上相切時,即有兩個相等的實數(shù)根,即,

          得,

          時,,作出函數(shù)與函數(shù)的圖象如圖:


          由圖知當直線與函數(shù)圖象在上相切時,,

          數(shù)形結合可得有三個零點時,實數(shù)滿足

          再根據(jù)函數(shù)的周期為4,可得所求的實數(shù)的范圍.

          故選:C

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e為自然對數(shù)的底數(shù))

          (Ⅰ)當a=1時,求f(x)的單調區(qū)間;

          (Ⅱ)若函數(shù)f(x)在 上無零點,求a的最小值;

          (Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對數(shù)是簡化繁雜運算的產(chǎn)物.16世紀時,為了簡化數(shù)值計算,數(shù)學家希望將乘除法歸結為簡單的加減法.當時已經(jīng)有數(shù)學家發(fā)現(xiàn)這在某些情況下是可以實現(xiàn)的.

          比如,利用以下2的次冪的對應表可以方便地算出的值.

          4

          5

          6

          7

          8

          9

          10

          11

          12

          16

          32

          64

          128

          256

          512

          1024

          2048

          4096

          首先,在第二行找到16256;然后找出它們在第一行對應的數(shù),即48,并求它們的和,即12;最后在第一行中找到12,讀出其對應的第二行中的數(shù)4096,這就是的值.

          用類似的方法可以算出的值,首先,在第二行找到4096128;然后找出它們在第一行對應的數(shù),即127,并求它們的______;最后在第一行中找到______,讀出其對應的第二行中的數(shù)______,這就是.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】是坐標原點,橢圓的左右焦點分別為,點在橢圓上,若的面積最大時且最大面積為.

          1)求橢圓的標準方程;

          2)直線與橢圓在第一象限交于點,點是第四象限內的點且在橢圓上,線段被直線垂直平分,直線與橢圓交于另一點,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村100戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標,將指標按照,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當時,認定該戶為“亟待幫住戶”.

          1)為了更好的了解和幫助該村的這些貧困戶,決定用分層抽樣的方法從這100戶中隨機抽取20戶進行更深入的調查,求應該抽取“絕對貧困戶”的戶數(shù);

          2)從這20戶中任取3戶,求“絕對貧困戶”多于“相對貧困戶”的概率;

          3)現(xiàn)在從(1)中所抽取的“絕對貧困戶”中任取3戶,用表示所選3戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】甲、乙兩位同學參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學各自從備選的5道不同題中隨機抽出3道題進行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結束,假設由第一輪答題得分期望高的同學在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(最先答題的同學)作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學有機會答第道題且回答正確則該同學加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨立;兩輪答題完畢總得分高者勝出.回答下列問題

          1)請預測第二輪最先開始作答的是誰?并說明理由

          2)①求第二輪答題中;

          ②求證為等比數(shù)列,并求)的表達式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,設曲線

          1)求函數(shù)的單調區(qū)間;

          2)求函數(shù)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】隨機調查某城市80名有子女在讀小學的成年人,以研究晚上八點至十點時間段輔導子女作業(yè)與性別的關系,得到下面的數(shù)據(jù)表:

              是否輔導

          性別

          輔導

          不輔導

          合計

          25

          60

          合計

          40

          80

          1)請將表中數(shù)據(jù)補充完整;

          2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學的成人女性晚上八點至十點輔導子女作業(yè)的概率;

          3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認為“晚上八點至十點時間段是否輔導子女作業(yè)與性別有關?”.

          參考公式:,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】軸正半軸上的動點作曲線的切線,切點為,,線段的中點為,設曲線軸的交點為

          1)求的大小及的軌跡方程;

          2)當動點到直線的距離最小時,求的面積.

          查看答案和解析>>

          同步練習冊答案