日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)判斷的單調(diào)性并寫(xiě)出證明過(guò)程;

          2)當(dāng)時(shí),關(guān)于x的方程在區(qū)間上有唯一實(shí)數(shù)解,求a的取值范圍.

          【答案】1R上遞增,證明見(jiàn)解析;(2.

          【解析】

          1)先判斷函數(shù)的奇偶性,再根據(jù)函數(shù)單調(diào)性的定義,作差比較大小即可求證明;

          2)根據(jù)(1)中所求單調(diào)性,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,利用之間的關(guān)系進(jìn)行換元,轉(zhuǎn)化為二次函數(shù)零點(diǎn)的分布問(wèn)題即可求得.

          1R上遞增.

          證明:恒成立,的定義域?yàn)?/span>R.

          ,,

          是奇函數(shù).

          ,

          上遞增,又R上連續(xù)不斷的奇函數(shù),

          R上遞增.

          2)由(1)得

          R上遞增.

          整理得,在上有唯一實(shí)數(shù)解

          構(gòu)造,,.

          ,則

          ,

          內(nèi)有且只有一個(gè)零點(diǎn),無(wú)零點(diǎn).

          ,上為增函數(shù).

          )若內(nèi)有且只有一個(gè)零點(diǎn),無(wú)零點(diǎn).

          )若的零點(diǎn),無(wú)零點(diǎn),

          ,

          ,經(jīng)檢驗(yàn)符合題意.

          綜上所述:.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】共享單車(chē)給市民出行帶來(lái)了諸多便利,某公司購(gòu)買(mǎi)了一批單車(chē)投放到某地給市民使用,

          據(jù)市場(chǎng)分析,每輛單車(chē)的營(yíng)運(yùn)累計(jì)利潤(rùn)y單位:元)與營(yíng)運(yùn)天數(shù)x滿足函數(shù)關(guān)系

          .

          1)要使?fàn)I運(yùn)累計(jì)利潤(rùn)高于800元,求營(yíng)運(yùn)天數(shù)的取值范圍;

          2)每輛單車(chē)營(yíng)運(yùn)多少天時(shí),才能使每天的平均營(yíng)運(yùn)利潤(rùn)的值最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

          (1)證明:平面PAB⊥平面PAD;

          (2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          )當(dāng)時(shí),求的單調(diào)區(qū)間和極值.

          )若對(duì)于任意,都有成立,求的取值范圍 ;

          )若證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

          (Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

          (Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.

          【答案】I;(II.

          【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.

          試題解析:(Ⅰ)由,得,即

          所以曲線的極坐標(biāo)方程為

          II)將的參數(shù)方程代入,得

          , 所以,又,

          所以,且,

          所以,

          ,得,所以.

          的取值范圍是.

          型】解答
          結(jié)束】
          23

          【題目】已知、、均為正實(shí)數(shù).

          (Ⅰ)若,求證:

          (Ⅱ)若,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知離心率為的橢圓焦點(diǎn)在軸上,且橢圓個(gè)頂點(diǎn)構(gòu)成的四邊形面積為,過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn).

          (1)求橢圓的方程;

          (2)設(shè)為橢圓上一點(diǎn),且為坐標(biāo)原點(diǎn)).求當(dāng)時(shí),實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動(dòng)場(chǎng)所,配備了各種文化娛樂(lè)活動(dòng)所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計(jì)數(shù)據(jù)如表:(為了便于計(jì)算,把2015年簡(jiǎn)記為5,其余以此類推)

          年份(年)

          5

          6

          7

          8

          投資金額(萬(wàn)元)

          15

          17

          21

          27

          (1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;

          (2)預(yù)測(cè)該社區(qū)在2019年在“文化丹青”上的投資金額.

          (附:對(duì)于一組數(shù)據(jù) ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開(kāi)展《中國(guó)漢字聽(tīng)寫(xiě)大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫(huà)出莖葉圖,如圖所示(把頻率當(dāng)作概率).

          (1)求甲、乙兩人成績(jī)的平均數(shù)和中位數(shù);

          (2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案