日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)圓O:x2+y2=3,直線l:x+3y-6=0,,點(diǎn)P(x0,y0)∈l若在圓O上存在點(diǎn)Q,使得∠OPQ=60°,則x0的取值范圍是
           
          分析:圓O外有一點(diǎn)P,圓上有一動(dòng)點(diǎn)Q,∠OPQ在PQ與圓相切時(shí)取得最大值.如果OP變長(zhǎng),那么∠OPQ可以獲得的最大值將變。?yàn)閟in∠OPQ=
          Q0
          PO
          ,QO為定值,即半徑,PO變大,則sin∠OPQ變小,由于∠OPQ∈(0,
          π
          2
          ),所以∠OPQ也隨之變。梢缘弥,當(dāng)∠OPQ=60,且PQ與圓相切時(shí),PO=2,而當(dāng)PO>2時(shí),Q在圓上任意移動(dòng),∠OPQ<60恒成立.因此,P的取值范圍就是PO≤2,即滿(mǎn)足PO≤2,就能保證一定存在點(diǎn)Q,使得∠OPQ=60°,否則,這樣的點(diǎn)Q是不存在的.
          解答:解:由分析可得:PO2=x02+y02
          又因?yàn)镻在直線L上,所以x0=-(3y0-6)
          故10y02-36y0+3≤4
          解得
          8
          5
          y0≤2
          0≤x0
          6
          5

          即x0的取值范圍是[0,
          6
          5
          ]
          ,
          故答案為[0,
          6
          5
          ]
          點(diǎn)評(píng):解題的關(guān)鍵是結(jié)合圖形,利用幾何知識(shí),判斷出PO≤2,從而得到不等式求出參數(shù)的取值范圍.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)圓O:x2+y2=1,直線l:x+2y-4=0,點(diǎn)A∈l,若圓O上存在點(diǎn)B,且∠OAB=30°(O為坐標(biāo)原點(diǎn)),則點(diǎn)A的縱坐標(biāo)的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)如圖,設(shè)圓O:x2+y2=a2的兩條互相垂直的直徑為AB、CD,E在弧BD上,AE交CD于K,CE交AB于L,求證:(
          EK
          AK
          )2+(
          EL
          CL
          )2
          為定值
          (2)將橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)與x2+y2=a2相類(lèi)比,請(qǐng)寫(xiě)出與(1)類(lèi)似的命題,并證明你的結(jié)論.
          (3)如圖,若AB、CD是過(guò)橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)中心的兩條直線,且直線AB、CD的斜率積kABkCD=-
          b2
          a2
          ,點(diǎn)E是橢圓上異于A、C的任意一點(diǎn),AE交直線CD于K,CE交直線AB于L,求證:(
          EK
          AK
          )2+(
          EL
          CL
          )2
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)圓O:x2+y2=4,O為坐標(biāo)原點(diǎn)
          (I)若直線l過(guò)點(diǎn)P(1,2),且圓心O到直線l的距離等于1,求直線l的方程;
          (II)已知定點(diǎn)N(4,0),若M是圓O上的一個(gè)動(dòng)點(diǎn),點(diǎn)P滿(mǎn)足
          OP
          =
          1
          2
          (
          OM
          +
          ON
          )
          ,求動(dòng)點(diǎn)P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•廣東模擬)已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的上頂點(diǎn)為A(0,1),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)軸的弦長(zhǎng)為1.
          (1)求橢圓C1的方程;
          (2)設(shè)圓O:x2+y2=
          4
          5
          ,過(guò)該圓上任意一點(diǎn)作圓的切線l,試證明l和橢圓C1恒有兩個(gè)交點(diǎn)A,B,且有
          OA
          OB
          =0
          ;
          (3)在(2)的條件下求弦AB長(zhǎng)度的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案