【題目】在平面直角坐標系內(nèi),動點
與兩定點
,
連線的斜率之積為
.
(1)求動點的軌跡
的方程;
(2)設(shè)點,
是軌跡
上相異的兩點.
(Ⅰ)過點,
分別作拋物線
的切線
,
,
與
兩條切線相交于點
,證明:
;
(Ⅱ)若直線與直線
的斜率之積為
,證明:
為定值,并求出這個定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實數(shù)
滿足
,其中
;
:實數(shù)
滿足
.
(1)若,且
為真,求實數(shù)
的取值范圍;
(2)若是
的必要不充分條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點且離心率為
的橢圓
的中心在原點,焦點在
軸上.
(1)求橢圓的方程;
(2)設(shè)點是橢圓的左準線與
軸的交點,過點
的直線
與橢圓
相交于
兩點,記橢圓
的左,右焦點分別為
,上下兩個頂點分別為
.當線段
的中點落在四邊形
內(nèi)(包括邊界)時,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若函數(shù)在區(qū)間
上有兩個不同的零點,求實數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個交點,求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達式,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,
為正三角形,
,
,
與
中心
點,將
沿邊
折起,使
點至
點,已知
與平面
所成的角為
.
(1)求證:平面平面
;
(2)求已知二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差d∈(0,1),且 =1,當n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甘肅省瓜州縣自古就以盛產(chǎn)“美瓜”而名揚中外,生產(chǎn)的“瓜州蜜瓜”有4個系列30多個品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達14%-19%,是消暑止渴的佳品,有詩贊曰:冰泉浸綠玉,霸刀破黃金;涼冷消晚署,清甘洗渴心,調(diào)查表明,蜜瓜的甜度與海拔高度、日照時長、溫差有極強的相關(guān)性,分別用表示蜜瓜甜度與海拔高度、日照時長、溫差的相關(guān)程度,并對它們進行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標
的值評定蜜瓜的等級,若
,則為一級;若
,則為二級;若
,則為三級.近年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機抽取了10塊蜜瓜種植地,得到如下結(jié)果:
(1)若有蜜瓜種植地110塊,試估計等級為一級的蜜瓜種植地的數(shù)量;
(2)在所取樣本的二級和三級蜜瓜種植地中任取2塊, 表示取到三級蜜瓜種植地的數(shù)量,求隨機變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com