【題目】如圖,已知,
,且
是
的中點,
.
(1)求證:;
(2)求證:平面平面
;
(3)求與平面
所成角的正弦值.
【答案】(1)證明見解析;(2)證明見解析;(3)。
【解析】
(1)取的中點
,可以利用中位線定理,根據(jù)已知的平行關(guān)系和長度關(guān)系,可以得到一個平行四邊形,利用平行四邊形的對邊平行,這樣得到線線平行,也就能證明出線面平行;
(2)通過已知和(1)可知,通過線面垂直和平行線的性質(zhì),可以
這樣可以證明出線面垂直,而
從而證明出
平面
利用面面垂直的判定定理可以證明出平面
平面
;
(3)通過(2)證明出的線面垂直關(guān)系,找到線面角,利用勾股定理、平行四邊形的性質(zhì),求出相關(guān)的邊,利用正弦的定義,求出與平面
所成角的正弦值。
(1)如上圖,取的中點
,連接
,
由是
的中點,
且
又
,且
且
.
是平行四邊形,從而
,
又平面
,
平面
, 因此
;
(2)證明:是
的中點,
,
因為平面
,
,所以
平面
,
又平面
而
平面
由可知
平面
平面
,
平面
平面
;
(3)由(2)知平面
是
在平面
的射影,則
與平面
所成的角為
,因為
,所以
,由(1)可知:
是平行四邊形,從而
,
在中,
與平面
所成角的正弦值是
。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)圖象在點
處的切線與
的圖象相切,求
的值;
(3)若函數(shù)存在兩個極值點
,
,且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對任意
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,邊
,
,
所在直線的方程分別為
,
,
.
(1)求邊上的高所在的直線方程;
(2)若圓過直線
上一點及
點,當(dāng)圓
面積最小時,求其標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,
,其中
,則下列判斷錯誤的是( )
A.向量與
軸正方向的夾角為定值(與
、
之值無關(guān))
B.的最大值為
C.與
夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取
名學(xué)生進行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求
的值及抽取到的女生人數(shù);
(2)學(xué)校計劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有99.5%的把握認為選擇科目與性別有關(guān)?
說明你的理由;
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若,求實數(shù)
的取值范圍;
(2)設(shè)函數(shù)的極大值為
,極小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動。這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合.例如:
,若將集合
的各個元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為____________;
定義現(xiàn)指定
,將集合
的元素從小到大排列組成數(shù)列
,若將
的各項之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時數(shù)工(單位:小時) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,
.
參考公式:,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com