【題目】已知函數(shù),
是
的導(dǎo)函數(shù),則下列結(jié)論中錯(cuò)誤的個(gè)數(shù)是( )
①函數(shù)的值域與
的值域相同;
②若是函數(shù)
的極值點(diǎn),則
是函數(shù)
的零點(diǎn);
③把函數(shù)的圖像向右平移
個(gè)單位長度,就可以得到
的圖像;
④函數(shù)和
在區(qū)間
內(nèi)都是增函數(shù).
A.0B.1C.2D.3
【答案】B
【解析】
求出函數(shù)f(x)的導(dǎo)函數(shù)g(x),再分別判斷f(x)、g(x)的值域、極值點(diǎn)和零點(diǎn),圖象平移和單調(diào)性問題即可一一做出判斷,從而得到答案.
,
,
①,,
,兩函數(shù)的值域相同,都是
,故①正確;
②,若是函數(shù)
的極值點(diǎn),則
,
,解得
,
,
,
也是函數(shù)
的零點(diǎn),故②正確;
③,把函數(shù)的圖象向右平移
個(gè)單位,得
,故③錯(cuò)誤;
④,時(shí),
,
是單調(diào)增函數(shù),
,
也是單調(diào)增函數(shù),故④正確.
綜上所述,以上結(jié)論中錯(cuò)誤的個(gè)數(shù)是1.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(3+x)+lg(3-x).
(1)判斷的奇偶性并加以證明;
(2)判斷的單調(diào)性(不需要證明);
(3)解關(guān)于m的不等式f( m )- f( m+1)﹤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點(diǎn)
在橢圓上.
()求橢圓
的方程.
()設(shè)動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)
為圓心的圓,滿足此圓與
相交于兩點(diǎn)
,
(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線
、
的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交
軸負(fù)半軸于
,交
軸正半軸于
,求
的面積的最小值并求此時(shí)直線
的方程;
(3)已知點(diǎn),若點(diǎn)
到直線
的距離為
,求
的最大值并求此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,底面
是直角三角形,
,
為側(cè)棱
的中點(diǎn).
(1)求異面直線、
所成角的余弦值;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向左平移
個(gè)單位長度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的
倍(縱坐標(biāo)不變),得到
的圖像.
(1)求的單調(diào)遞增區(qū)間;
(2)若對于任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對應(yīng)曲線(如圖所示)過點(diǎn)
.
(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時(shí)間(精確到0.01小時(shí))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
A. B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右點(diǎn)分別為
點(diǎn)
在橢圓上,且
(1)求橢圓的方程;
(2)過點(diǎn)(1,0)作斜率為的直線
交橢圓
于M、N兩點(diǎn),若
求直線
的方程;
(3)點(diǎn)P、Q為橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),若直線
的斜率之積為
求證:
為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com