日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)有如下定義:
          定義(1):設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
          定義(2):設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
          己知f(x)=x3-3x2+ax+2在x=-1處取得極大值.請(qǐng)回答下列問題:
          (1)當(dāng)x∈[0,4]時(shí),求f(x)的最小值和最大值;
          (2)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo),并檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱.

          解:(1)f′(x)=3x2-6x+a
          ∵f(x)=x3-3x2+ax+2在x=-1處取得極大值
          ∴f′(-1)=0
          ∴a=-9 …(2分)
          ∴f(x)=x3-3x2-9x+2
          ∴f′(x)=3(x+1)(x-3)=0知x=-1或x=3…(3分)
          當(dāng)x變化時(shí),f(x)變化如下:
          x(-∞,-1)-1(-1,3)3(3,+∞)
          f(x)+0-0+
          f(x)7-25
          又f(0)=2,f(4)=-18
          ∴f(x)min=-25,f(x)max=2 …(6分)
          (2)由(1)知f′(x)=3x2-6x-9,∴f″(x)=6x-6 …(8分)
          由f″(x)=0,即6x-6=0,∴x=1,
          又f(1)=-9,
          ∴f(x)=x3-3x2-9x+2的“拐點(diǎn)”A的坐標(biāo)是(1,-9)…(10分)
          ∵f(1+x)+f(1-x)=-18,2f(1)=-18
          ∴由定義(2)知:f(x)=x3-3x2-9x+2的圖象關(guān)于點(diǎn)A(1,-9)對(duì)稱…(12分)
          分析:(1)求導(dǎo)函數(shù),利用f(x)=x3-3x2+ax+2在x=-1處取得極大值,求出a的值,確定函數(shù)的單調(diào)性,從而可求f(x)的最小值和最大值;
          (2)利用函數(shù)f(x)的“拐點(diǎn)”的定義,可求A的坐標(biāo),利用定義(2),即可求得結(jié)論.
          點(diǎn)評(píng):本題考查一階導(dǎo)數(shù)、二階導(dǎo)數(shù)的求法,函數(shù)的拐點(diǎn)的定義以及函數(shù)圖象關(guān)于某點(diǎn)對(duì)稱的條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
          定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
          定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
          己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
          (1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
           
          ;
          (2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•昌平區(qū)二模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.給定函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          ,請(qǐng)你根據(jù)上面探究結(jié)果,解答以下問題
          (1)函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          的對(duì)稱中心為
          1
          2
          ,1)
          1
          2
          ,1)
          ;
          (2)計(jì)算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )
          +…+f(
          2012
          2013
          )=
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•房山區(qū)二模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心.若f(x)=
          1
          3
          x3-
          1
          2
          x2+
          1
          6
          x+1
          ,則該函數(shù)的對(duì)稱中心為
          (
          1
          2
          ,1)
          (
          1
          2
          ,1)
          ,計(jì)算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )+…+f(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱中心”,且‘拐點(diǎn)’就是對(duì)稱中心.請(qǐng)你將這一發(fā)現(xiàn)作為條件.
          (1).函數(shù)f(x)=x3-3x2+3x的對(duì)稱中心為
          (1,2)
          (1,2)

          (2).若函數(shù)g(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          +
          1
          x-
          1
          2
          ,則g(
          1
          2013
          )+g(
          2
          2013
          )+g(
          3
          2013
          )+…+g(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•安慶三模)對(duì)于三次函數(shù)f(x)-ax3+bx2+cx+d(a≠0),給出定義:設(shè)ft(x)是函數(shù)y=f(x)的導(dǎo)數(shù),ftt(x)是函數(shù)ft的導(dǎo)數(shù),若方程ftt(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)一元三次函數(shù)都有“拐點(diǎn)”;且該“拐點(diǎn)”也為該函數(shù)的對(duì)稱中心.若f(x)=x3-
          3
          2
          x2+
          1
          2
          x+1,則f(
          1
          2014
          )+f(
          2
          2014
          )+…+f(
          2013
          2014
          )=( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案