日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (滿分13分)

               以知橢圓的兩個焦點(diǎn)分別為,過點(diǎn)的直

          線與橢圓相交與兩點(diǎn),且。

          (1)求橢圓的離心率;w.w.w.k.s.5.u.c.o.m   

          (2)求直線AB的斜率;w.w.w.k.s.5.u.c.o.m   

          (3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)的外接圓上,求 的值

          解析:(I)由//,得,從而

            整理,得,故離心率

          (II)由(I)得,所以橢圓的方程可寫為

            設(shè)直線AB的方程為,即

           由已知設(shè),則它們的坐標(biāo)滿足方程組

          消去y整理,得.

          依題意,

          而                 ①

                          

          由題設(shè)知,點(diǎn)B為線段AE的中點(diǎn),所以

                                 ③

          聯(lián)立①③解得,

          代入②中,解得.

          (III)解法一:由(II)

          當(dāng)時,得,由已知得.

          線段的垂直平分線l的方程為直線l與x軸

          的交點(diǎn)外接圓的圓心,因此外接圓的方程為.

          直線的方程為,于是點(diǎn)H(m,n)的坐標(biāo)滿足方程組

            , 由解得

          當(dāng)時,同理可得

          解法二:由(II)可知

          當(dāng)時,得,由已知得

          由橢圓的對稱性可知B,,C三點(diǎn)共線,因?yàn)辄c(diǎn)H(m,n)在的外接圓上,

          ,所以四邊形為等腰梯形.

                由直線的方程為,知點(diǎn)H的坐標(biāo)為.

          因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091015/20091015191316043.gif' width=80 height=27>,所以,解得m=c(舍),或.

          ,所以

          當(dāng)時同理可得

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009福建卷理)(本小題滿分13分)

          已知A,B 分別為曲線C: +=1(y0,a>0)與x軸

          的左、右兩個交點(diǎn),直線過點(diǎn)B,且與軸垂直,S為

          異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.

          (1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);

          (II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問:是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請說明理由。                                  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓O相切.

          (1)求橢圓C1的方程;

          (ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過點(diǎn)F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

          (III)過橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三12月周考理科數(shù)學(xué)試卷 題型:解答題

          (本小題滿分13分)已知橢圓C的中心在圓點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個端點(diǎn),過F1的直線與橢圓交于A,B兩點(diǎn),的面積為4,的周長為(I)求橢圓C的方程;(II)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三上學(xué)期第四次月考文科數(shù)學(xué)卷 題型:解答題

          (本題滿分13分)

              已知三點(diǎn)、

          (Ⅰ)求以、為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)設(shè)點(diǎn)、關(guān)于直線的對稱點(diǎn)分別為、、,求以、為焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程

           

          查看答案和解析>>

          同步練習(xí)冊答案