日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知無(wú)窮數(shù)列的前項(xiàng)和為,且滿足,其中、是常數(shù).
          (1)若,,,求數(shù)列的通項(xiàng)公式;
          (2)若,,,且,求數(shù)列的前項(xiàng)和;
          (3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.

          (1);(2);(3),

          解析試題分析:(1)已知的關(guān)系,要求,一般是利用它們之間的關(guān)系,把,化為,得出數(shù)列的遞推關(guān)系,從而求得通項(xiàng)公式;(2)與(1)類(lèi)似,先求出,時(shí),推導(dǎo)出之間的關(guān)系,求出通項(xiàng)公式,再求出前項(xiàng)和;(3)這是一類(lèi)探究性命題,可假設(shè)結(jié)論成立,然后由這個(gè)假設(shè)的結(jié)論來(lái)推導(dǎo)出條件,本題設(shè)數(shù)列是公比不為的等比數(shù)列,則,代入恒成立的等式,得
          對(duì)于一切正整數(shù)都成立,所以,,,得出這個(gè)結(jié)論之后,還要反過(guò)來(lái),由這個(gè)條件證明數(shù)列是公比不為的等比數(shù)列,才能說(shuō)明這個(gè)結(jié)論是正確的.在討論過(guò)程中,還要討論的情況,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/2/1kai83.png" style="vertical-align:middle;" />時(shí),,,當(dāng)然這種情況下,不是等比數(shù)列,另外
          試題解析:(1)由,得;               1分
          當(dāng)時(shí),,即        2分
          所以;                     1分
          (2)由,得,進(jìn)而,    1分
          當(dāng)時(shí),
          ,
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/8/cebmi1.png" style="vertical-align:middle;" />,所以,           2分
          進(jìn)而                   2分
          (3)若數(shù)列是公比為的等比數(shù)列,
          ①當(dāng)時(shí),,
          ,得恒成立.
          所以,與數(shù)列是等比數(shù)列矛盾;              1分
          ②當(dāng)時(shí),,        1分
          恒成立,
          對(duì)于一切正整數(shù)都成立
          所以,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知等差數(shù)列{an}的前n項(xiàng)和為Snn∈N*,且a2=3,點(diǎn)(10,S10)在直線y=10x上.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=2an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=x2-(a-1)x-b-1,當(dāng)x∈[b, a]時(shí),函數(shù)f(x)的圖像關(guān)于y軸對(duì)稱(chēng),數(shù)列的前n項(xiàng)和為Sn,且Sn=f(n).
          (Ⅰ)求數(shù)列的通項(xiàng)公式;
          (Ⅱ)設(shè),Tn=b1+b2++bn,若Tn>2m,求m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列,滿足,,且對(duì)任意的正整數(shù)均成等比數(shù)列.
          (1)求、的值;
          (2)證明:均成等比數(shù)列;
          (3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列具有性質(zhì):①為正數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),
          (1)若,求數(shù)列的通項(xiàng)公式;
          (2)若成等差數(shù)列,求的值;
          (3)設(shè),數(shù)列的前項(xiàng)和為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          等差數(shù)列中,,公差,且它的第2項(xiàng),第5項(xiàng),第14項(xiàng)分別是等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).
          (Ⅰ)求數(shù)列的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列對(duì)任意自然數(shù)均有成立,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列中,且點(diǎn)在直線上。
          (1)求數(shù)列的通項(xiàng)公式;
          (2)若函數(shù)求函數(shù)的最小值;
          (3)設(shè)表示數(shù)列的前項(xiàng)和.試問(wèn):是否存在關(guān)于的整式,使得對(duì)于一切不小于2的自然數(shù)恒成立?若存在,寫(xiě)出的解析式,并加以證明;若不存在,試說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          數(shù)列{an}中,a1=1,當(dāng)時(shí),其前n項(xiàng)和滿足.
          (Ⅰ)求Sn的表達(dá)式;
          (Ⅱ)設(shè),數(shù)列{bn}的前n項(xiàng)和為,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知等差數(shù)列的前項(xiàng)和為,且.
          (I)求數(shù)列的通項(xiàng)公式;
          (II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和
          (Ⅲ)設(shè),求數(shù)列的前項(xiàng)和

          查看答案和解析>>