日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知向量 平行.
          (1)求 的值;
          (2)若bcosC+ccosB=1,△ABC周長為5,求b的長.

          【答案】
          (1)解:由已知向量 平行

          ∴b(cosA﹣2cosC)=(2c﹣a)cosB,

          由正弦定理,可設(shè) ,則(cosA﹣2cosC)ksinB=(2ksinC﹣ksinA)cosB,

          即(cosA﹣2cosC)sinB=(2sinC﹣sinA)cosB,

          化簡可得sin(A+B)=2sin(B+C),

          又A+B+C=π,所以sinC=2sinA,

          因此


          (2)解: ,

          由(1)知 ,∴c=2,

          由a+b+c=5,得b=2.


          【解析】(1)利用向量共線的條件,建立等式,利用正弦定理,將邊轉(zhuǎn)化為角,利用和角公式,即可得到結(jié)論;(2)由bcosC+ccosB=1利用余弦定理,求得a,再由(1)計(jì)算c,利用△ABC周長為5,即可求b的長.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個(gè)單位后,得到f(x)的圖象,則(
          A.f(x)=﹣sin2x
          B.f(x)的圖象關(guān)于x=﹣ 對(duì)稱
          C.f( )=
          D.f(x)的圖象關(guān)于( ,0)對(duì)稱

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)訂TP過定點(diǎn) 且與圓N: 相切,記動(dòng)圓圓心P的軌跡為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)過點(diǎn)D(3,0)且斜率不為零的直線交曲線C于A,B兩點(diǎn),在x軸上是否存在定點(diǎn)Q,使得直線AQ,BQ的斜率之積為非零常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值4.
          (I)求實(shí)數(shù)a,b的值;
          (Ⅱ)當(dāng)a>0時(shí),求曲線y=f(x)在點(diǎn)(﹣2,f(﹣2))處的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= e3x+me2x+(2m+1)ex+1有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍是(
          A.(﹣ ,1﹣
          B.[﹣ ,1﹣ ]
          C.(﹣∞,1﹣
          D.(﹣∞,1﹣ )∪(1+ ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
          (1)求圓C的極坐標(biāo)方程;
          (2)直線l的極坐標(biāo)方程是 ,射線 與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求|OP||OQ|的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
          (1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
          (2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個(gè)單位,得到新的軌跡C,求C的軌跡方程;
          (3)過軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A,B分別為橢圓E: 的左,右頂點(diǎn),點(diǎn)P(0,﹣2),直線BP交E于點(diǎn)Q, 且△ABP是等腰直角三角形.
          (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)過點(diǎn)P的動(dòng)直線l與E相交于M,N兩點(diǎn),當(dāng)坐標(biāo)原點(diǎn)O位于以MN為直徑的圓外時(shí),求直線l斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O為BD的中點(diǎn).
          (1)求證:CD∥平面POA;
          (2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A﹣PD﹣B的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案