【題目】已知函數(shù),
,現(xiàn)有如下兩種圖象變換方案:
(方案1):將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话耄v坐標(biāo)不變,再將所得圖象向左平移
個單位長度;
(方案2):將函數(shù)的圖象向左平移
個單位長度,再將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變.
請你從中選擇一種方案,確定在此方案下所得函數(shù)的解析式,并解決如下問題:
(1)用“五點(diǎn)作圖法”畫出函數(shù)在
的閉區(qū)間上的圖象(列表并畫圖);
(2)請你在答題紙相應(yīng)位置逐一寫出函數(shù)的①周期性②奇偶性③單調(diào)遞增區(qū)間④單調(diào)遞減區(qū)間.
【答案】無論在何種方案下所得的函數(shù)都是.(1)答案見解析;(2)答案見解析.
【解析】
在(方案1)和(方案2)中,利用三角函數(shù)圖象變換規(guī)律可得出函數(shù)的解析式為
.
(1)當(dāng)時,求得
,分別令
等于
、
、
、
、
、
,求得對應(yīng)的
值,列表、描點(diǎn)、連線,進(jìn)而可得出函數(shù)
在區(qū)間
上的圖象;
(2)根據(jù)函數(shù)的解析式可得出函數(shù)
的最小正周期、奇偶性,分別解不等式
、
,可分別得出函數(shù)
的單調(diào)遞增區(qū)間和遞減區(qū)間.
(方案1):將函數(shù)的圖象上所有點(diǎn)的橫標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,
得到函數(shù)的圖象,再將函數(shù)
圖象向左平移
個單位長度得到
的圖象;
(方案2):將函數(shù)的圖象向左平移
個單位長度,得到函數(shù)
的圖象,
再將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,得到
的圖象,即
.
所以,無論在何種方案下所得的函數(shù)都是.
(1)當(dāng)時,
,列表如下:
所以,函數(shù)在區(qū)間
上圖象如下圖所示:
(2)函數(shù),
最小正周期:;奇偶性:非奇非偶函數(shù);
增區(qū)間:令,解得
,
所以,函數(shù)的單調(diào)遞增區(qū)間為
;
減區(qū)間:令,解得
,
所以,函數(shù)的單調(diào)遞減區(qū)間為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
如圖,在四棱錐
.
(1)當(dāng)PB=2時,證明:平面平面ABCD.
(2)當(dāng)四棱錐
的體積為
,且二面角
為鈍角時,求直線PA與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司計(jì)劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入
(單位:萬元)滿足
,乙城市收益
與投入
(單位:萬元)滿足
,設(shè)甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當(dāng)投資甲城市128萬元時,求此時公司總收益;
⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
,
,
是數(shù)列
的前
項(xiàng)的和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,
,
成等差數(shù)列,
,18,
成等比數(shù)列,求正整數(shù)
的值;
(3)是否存在,使得
為數(shù)列
中的項(xiàng)?若存在,求出所有滿足條件的
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有四輛汽車,其中
車的車牌尾號為0,
兩輛車的車牌尾號為6,
車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知
兩輛汽車每天出車的概率為
,
兩輛汽車每天出車的概率為
,且四輛汽車是否出車是相互獨(dú)立的.
該公司所在地區(qū)汽車限行規(guī)定如下:
(1)求該公司在星期四至少有2輛汽車出車的概率;
(2)設(shè)表示該公司在星期一和星期二兩天出車的車輛數(shù)之和,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)
中
(
)的成員自駕時,自駕群體的人均通勤時間為
(單位:分鐘),而公交群體的人均通勤時間不受
影響,恒為
分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間
的表達(dá)式;討論
的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為
,圓
的方程為
,動圓
與圓
內(nèi)切且與圓
外切.
(1)求動圓圓心的軌跡
的方程;
(2)已知與
為平面內(nèi)的兩個定點(diǎn),過
點(diǎn)的直線
與軌跡
交于
,
兩點(diǎn),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體中,四邊形
為菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證:為等腰直角三角形;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com