日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知三棱錐的側(cè)棱、、兩兩垂直,且,的中點.

          (1)求點到面的距離;
          (2)求二面角的正弦值.

          (1);(2).

          解析試題分析:(1)解法一是利用等體積法求出點到平面的距離,具體做法是:先利用、兩兩垂直以及它們的長度計算出三棱錐的體積,然后將此三棱錐轉(zhuǎn)換成以點為頂點,以所在平面為底面的三棱錐通過體積來計算點到平面的距離;解法二是直接利用空間向量法求點到平面的距離;(2)解法一是通過三垂線法求二面角的正弦值,即在平面內(nèi)作,垂足為點,連接、,證明,從而得到為二面角的平面角,再選擇合適的三角形求出的正弦值;解法二是直接利用空間向量法求二面角的余弦值,進(jìn)而求出它的正弦值.
          試題解析:解法一:(1)如下圖所示,取的中點,連接,

          由于,且
          平面,平面平面,
          平面,,
          的中點,,
          平面,平面,平面
          平面,,
          ,且,
          的中點,,
          平面,平面,,
          ,
          ,
          設(shè)點到平面的距離為,由等體積法知,,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱中,,是棱上的一點,的延長線與的延長線的交點,且∥平面。

          (1)求證:
          (2)求二面角的平面角的余弦值;
          (3)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

          (1)求異面直線B1C1與AC所成角的大小;
          (2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,棱柱的側(cè)面是菱形,

          (Ⅰ)證明:平面平面;
          (Ⅱ)設(shè)上的點,且平面,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知三角形所在平面互相垂直,且,,點,分別在線段上,沿直線向上翻折,使重合.

          (Ⅰ)求證:;
          (Ⅱ)求直線與平面所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,的中點。

          (1)求異面直線所成角的余弦值;
          (2)求直線和平面的所成角的正弦值。
          (3)求點E到面ABC的距離。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

          (1)證明:B1C1⊥CE;
          (2)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (如圖1)在平面四邊形中,中點,,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點.

          (1)求三棱錐的體積;
          (2)在線段PC上是否存在一點M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖棱柱的側(cè)面是菱形,,D是的中點,證明:

          (Ⅰ)∥面
          (Ⅱ)平面平面.

          查看答案和解析>>