【題目】每個(gè)國家身高正常的標(biāo)準(zhǔn)是不一樣的,不同年齡、不同種族、不同地區(qū)身高都是有差異的,我們國家會定期進(jìn)行0~18歲孩子身高體重全國性調(diào)查,然后根據(jù)這個(gè)調(diào)查結(jié)果制定出相應(yīng)的各個(gè)年齡段的身高標(biāo)準(zhǔn).一般測量出一個(gè)孩子的身高,對照一下身高體重表,如果在平均值標(biāo)準(zhǔn)差以內(nèi)的就說明你的孩子身高是正常的,否則說明你的孩子可能身高偏矮或偏高了.根據(jù)科學(xué)研究0~18歲的孩子的身高服從正態(tài)分布.在某城市隨機(jī)抽取100名18歲男大學(xué)生得到其身高(
)的數(shù)據(jù).
(1)記表示隨機(jī)抽取的100名18歲男大學(xué)生身高的數(shù)據(jù)在
之內(nèi)的人數(shù),求
及
的數(shù)學(xué)期望.
(2)若18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi),則說明孩子的身高是正常的.
(i)請用統(tǒng)計(jì)學(xué)的知識分析該市18歲男大學(xué)生身高的情況;
(ii)下面是抽取的100名18歲男大學(xué)生中20名大學(xué)生身高()的數(shù)據(jù):
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
經(jīng)計(jì)算得,
,其中
為抽取的第
個(gè)學(xué)生的身高,
.用樣本平均數(shù)
作為
的估計(jì)值,用樣本標(biāo)準(zhǔn)差
作為
的估計(jì),剔除
之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)
和
的值.(精確到0.01)
附:若隨機(jī)變量服從正態(tài)分布
,則
,
.
【答案】(1)概率為,期望為
(2)(i)在該市中,18歲男大學(xué)生的身高是正常的比例為
.(ii)
的估計(jì)值為1.71,
的估計(jì)值為0.1.
【解析】
(1)由原則知抽取的
名
歲男大學(xué)生身高的數(shù)據(jù)在
之外的概率為
,得到
,由二項(xiàng)分布的知識可求得所求概率和期望;
(2)(i)由(1)中身高正常的概率可得統(tǒng)計(jì)結(jié)論;
(ii)首先確定剔除數(shù)據(jù)為,計(jì)算剩余數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差即為
和
的估計(jì)值.
(1)抽取的名
歲男大學(xué)生身高的數(shù)據(jù)在
之內(nèi)的概率為
在之外的概率為:
,故
,
(2)(i)由(1)知,歲男大學(xué)生的身高是正常的概率為
在該市中,歲男大學(xué)生的身高是正常的比例為
(ii)當(dāng),
時(shí),區(qū)間
為
,故除去的數(shù)據(jù)為
剩下數(shù)據(jù)的平均數(shù)為:
的估計(jì)值為
又,剔除
剩下數(shù)據(jù)的樣本方差為:
其標(biāo)準(zhǔn)差為
的估計(jì)值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為
,對于任意正整數(shù)m、n及正常數(shù)q,當(dāng)
時(shí),
恒成立,若存在常數(shù)
,使得
為等差數(shù)列,則常數(shù)c的值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:
(t為參數(shù)), C
:
(
為參數(shù))。
(1)化C,C
的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對應(yīng)的參數(shù)為
,Q為C
上的動(dòng)點(diǎn),求
中點(diǎn)
到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
.
(1)求證:平面
;
(2)求異面直線與
所成角的大。
(3)點(diǎn)在線段
上,且
,點(diǎn)
在線段
上,若
平面
,求
的值(用含
的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我們的教材必修一中有這樣一個(gè)問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)元;
方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)
元;
方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.
記三種方案第天的回報(bào)分別為
,
,
.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,
,
的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;
(2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)
滿足對任意
,
成立,當(dāng)
時(shí),
,則在
內(nèi),函數(shù)
的所有零點(diǎn)之和為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對工業(yè)增加值(萬億元)與年份序號
的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù)
,其擬合指數(shù)
;研究人員乙采用函數(shù)
,其擬合指數(shù)
;研究人員丙采用線性函數(shù)
,請計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)
與擬合指數(shù)
滿足關(guān)系
).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于
的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本
的相關(guān)系數(shù)
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn)
,
,動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)軌跡上有兩點(diǎn)
,
,它們關(guān)于直線
:
對稱,且滿足
,求
的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com