【題目】如圖,“大衍數(shù)列”:0,2,4,8,12….來源于《乾坤譜》中對《易傳》“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生過程中曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項和的程序框圖.執(zhí)行該程序框圖,輸入
,則輸出的
( )
A.100B.140C.190D.250
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體中,
,
,
,
,
且平面
平面
.
(1)設(shè)點為線段
的中點,試證明
平面
;
(2)若直線與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間
上的最大值為
,最小值為
,記
,
;
(1)求實數(shù)、
的值;
(2)若不等式對任意
恒成立,求實數(shù)
的范圍;
(3)對于定義在上的函數(shù)
,設(shè)
,
,用任意
將
劃分成
個小區(qū)間,其中
,若存在一個常數(shù)
,使得不等式
恒成立,則稱函數(shù)
為在
上的有界變差函數(shù),試證明函數(shù)
是在
上的有界變差函數(shù),并求出
的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個點.
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時,求直線AD與直線BC的交點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
.已知函數(shù)
,
.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和
的圖象在公共點(x0,y0)處有相同的切線,
(i)求證:在
處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間
上恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線
與橢圓
在第一象限內(nèi)的交點是
,點
在
軸上的射影恰好是橢圓
的右焦點
,橢圓
的另一個焦點是
,且
.
(1)求橢圓的方程;
(2)直線過點
,且與橢圓
交于
,
兩點,求
的面積的最大值及此時
內(nèi)切圓半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以
為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若點的極坐標(biāo)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前
項和為
,且
.
(1)求數(shù)列的通項公式;
(2)若,數(shù)列
的前
項和為
,求
的取值范圍;
(3)若,從數(shù)列
中抽出部分項(奇數(shù)項與偶數(shù)項均不少于兩項),將抽出的項按照某一順序排列后構(gòu)成等差數(shù)列.當(dāng)?shù)炔顢?shù)列的項數(shù)最大時,求所有滿足條件的等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com