日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個(gè)點(diǎn).

          (1)r的取值范圍;

          (2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時(shí),求直線AD與直線BC的交點(diǎn)P的坐標(biāo).

          【答案】(1) r(2,3). (2) (,0).

          【解析】

          (1)聯(lián)立拋物線與圓的方程,利用判別式與韋達(dá)定理列不等式組,從而可得結(jié)果;(2)根據(jù)S=(+)·(x2x1)=(4+4)(x2x1),利用韋達(dá)定理將S表示為關(guān)于r的函數(shù),換元后利用導(dǎo)數(shù)可求當(dāng)S最大時(shí)直線AD與直線BC的交點(diǎn)P的坐標(biāo).

          (1)聯(lián)立拋物線與圓的方程

          消去y,x22x+9r2=0.

          由題意可知x22x+9r2=0(0,+∞)上有兩個(gè)不等的實(shí)數(shù)根,

          所以解得2<r<3,r(2,3).

          (2)根據(jù)(1)可設(shè)方程x22x+9r2=0的兩個(gè)根分別為x1,x2(0<x1<x2),

          A(x1,2),B(x1, 2),C(x2, 2),D(x2,2),x1+x2=2,x1x2=9r2,

          所以S=(+)·(x2x1)=(4+4)(x2x1)

          =2·=2·.

          t=(0,1),f(t)=S2=4(2+2t)(44t2)= 32(t3+t2t1),

          f'(t)= 32(3t2+2t1)= 32(t+1)(3t1),可得f(t)(0,)上單調(diào)遞增,(,1)上單調(diào)遞減,即當(dāng)t=時(shí),四邊形ABCD的面積取得最大值.

          根據(jù)拋物線與圓的對(duì)稱性,可設(shè)P點(diǎn)坐標(biāo)為(m,0),P,A,D三點(diǎn)共線,可得=,整理得m==t=,

          所以點(diǎn)P的坐標(biāo)為(,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

          交付金額(元)

          支付方式

          0,1000]

          1000,2000]

          大于2000

          僅使用A

          18

          9

          3

          僅使用B

          10

          14

          1

          (Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;

          (Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

          (Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)討論的單調(diào)性;

          2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=xsinx的圖象是下列兩個(gè)圖象中的一個(gè),如圖,請(qǐng)你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且fx1)<fx2),則(  

          A.x1x2B.x1+x20C.x1x2D.x12x22

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側(cè),其中.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

          A.,在同一個(gè)球面上

          B.當(dāng)時(shí),三棱錐的體積為

          C.是異面直線且不垂直

          D.存在一個(gè)位置,使得平面平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

          )證明:GAB的中點(diǎn);

          )在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,大衍數(shù)列0,2,4,8,12….來源于《乾坤譜》中對(duì)《易傳》大衍之?dāng)?shù)五十的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生過程中曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項(xiàng)和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的

          A.100B.140C.190D.250

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.

          (1)求橢圓的方程;

          (2)不經(jīng)過點(diǎn)的直線)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,軸分別交于兩點(diǎn),,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論的單調(diào)性.

          (2)試問是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案