日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,
          Sn
          1
          4
          (an+1)2的等比中項(xiàng).
          (1)求證:數(shù)列{an}是等差數(shù)列;
          (2)若b1=a1,且bn=2bn-1+3,求數(shù)列{bn}的通項(xiàng)公式.
          分析:(1)要證明數(shù)列{an}為等差數(shù)列,需證明an-an-1=d,由已知條件可得(an-an-1-2)(an+an-1)=0,即可得出結(jié)論;
          (2)證明數(shù)列{bn+3}是以4為首項(xiàng),2為公比的等比數(shù)列,即可求數(shù)列{bn}的通項(xiàng)公式.
          解答:(1)證明:∵
          Sn
          1
          4
          (an+1)2的等比中項(xiàng),
          ∴Sn=
          1
          4
          (an+1)2,
          ∴n≥2時(shí),Sn-1=
          1
          4
          (an-1+1)2
          ,
          兩式相減可得an=
          1
          4
          (an+1)2-
          1
          4
          (an-1+1)2
          ,
          化簡(jiǎn)可得(an-an-1-2)(an+an-1)=0,
          ∵an+an-1>0,
          ∴an-an-1=2,
          S1=
          1
          4
          (a1+1)2
          ,∴a1=1,
          ∴數(shù)列{an}以1為首項(xiàng),以2為公差的等差數(shù)列;
          (2)解:∵bn=2bn-1+3,
          ∴bn+3=2(bn-1+3),
          ∵b1=a1=1,∴b1+3=4,
          ∴數(shù)列{bn+3}是以4為首項(xiàng),2為公比的等比數(shù)列,
          ∴bn+3=4•2n-1=2n+1,
          ∴bn=2n+1-3.
          點(diǎn)評(píng):本題考查等差數(shù)列、等比數(shù)列的證明,考查學(xué)生的計(jì)算能力,求解的關(guān)鍵是要把握遞推公式的轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
          (1)求證:數(shù)列{
          an
          2n+1
          }
          為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)an
          (2)設(shè)bn=
          1
          an
          ,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求Sn的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義:稱
          n
          a1+a2+…+an
          為n個(gè)正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
          1
          2n
          ,則
          lim
          n→∞
          nan
          sn
          ( 。
          A、0
          B、1
          C、2
          D、
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列an中,a1=2,點(diǎn)(
          an
          an+1)
          在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線y=-
          1
          2
          x+3
          上,其中Tn是數(shù)列bn的前項(xiàng)和.(n∈N+).
          (1)求數(shù)列an的通項(xiàng)公式;
          (2)求數(shù)列bn的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
          (1)求證:數(shù)列{bn}為等比數(shù)列;
          (2)記Tn為數(shù)列{
          1
          log2bn+1log2bn+2
          }
          的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
          1
          2
          a)
          對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an},Sn=
          1
          8
          (an+2)2

          (1)求證:{an}是等差數(shù)列;
          (2)若bn=
          1
          2
          an-30
          ,求數(shù)列{bn}的前n項(xiàng)和.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案