【題目】已知函數(shù)(其中
為常數(shù)且
)在
處取得極值.
(1)當(dāng)時(shí),求
的極大值點(diǎn)和極小值點(diǎn);
(2)若在
上的最大值為1,求
的值.
【答案】(Ⅰ)單調(diào)遞增區(qū)間為,
;單調(diào)遞減區(qū)間為
; (Ⅱ)
或
.
【解析】
試題分析:(1)通過(guò)求解函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的極值點(diǎn),求出,然后通過(guò)函數(shù)的單調(diào)性求解極值點(diǎn)即可;(2)令
,求出
,
,然后討論當(dāng)
時(shí),得出
的單調(diào)區(qū)間,求出
的最大值,求出
;再討論
時(shí),當(dāng)
,
及
時(shí),分別得出
的單調(diào)區(qū)間,求出
的最大值,即可求出
的值.
試題解析:(1)∵
∴.
∵函數(shù)在
處取得極值,
∴
∴當(dāng)時(shí),
,則
、
隨
的變化情況如下表:
1 | |||||
+ | 0 | - | 0 | + | |
極大值 | 極小值 |
∴的單調(diào)遞增區(qū)間為
和
,單調(diào)遞減區(qū)間為
∴的極大值點(diǎn)為
,
的極小值點(diǎn)為1.
(2)∵
令得,
,
∵在
處取得極值
∴
(。┊(dāng)時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減,
∴在區(qū)間
上的最大值為
,則
,即
∴
(ⅱ)當(dāng)時(shí),
①當(dāng)時(shí),
在
上單調(diào)遞增,
上單調(diào)遞減,
上單調(diào)遞增,
∴的最大值1可能在
或
處取得,
而
∴
∴
②當(dāng)時(shí),
在區(qū)間
上單調(diào)遞增,
上單調(diào)遞減,
上單調(diào)遞增
∴的最大值1可能在
或
處取得,而
∴,即
,與
③當(dāng)時(shí),
在區(qū)間
上單調(diào)遞增,在
上單調(diào)遞減,
∴的最大值1可能在
處取得,而
,矛盾.
綜上所述,或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級(jí)別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) |
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:
(Ⅰ)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)X的分布列與數(shù)學(xué)期望;
(Ⅱ)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為一階的可能性最大,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)若二面角的余弦值為
,求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)平面內(nèi)平行四邊形ABCD(A,B,C,D按逆時(shí)針排列),A點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為2+i,向量對(duì)應(yīng)的復(fù)數(shù)為1+2i,向量
對(duì)應(yīng)的復(fù)數(shù)為3-i.
(1)求點(diǎn)C,D對(duì)應(yīng)的復(fù)數(shù).
(2)求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
若曲線
在
處的切線在兩坐標(biāo)軸上的截距相等,求
的值;
若對(duì)
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)加工生產(chǎn)一批珠寶,要求每件珠寶都按統(tǒng)一規(guī)格加工,每件珠寶的原材料成本為3.5萬(wàn)元,每件珠寶售價(jià)(萬(wàn)元)與加工時(shí)間(單位:天)之間的關(guān)系滿足圖1,珠寶的預(yù)計(jì)銷量(件)與加工時(shí)間
(天)之間的關(guān)系滿足圖2.原則上,單件珠寶的加工時(shí)間不能超過(guò)55天,企業(yè)支付的工人報(bào)酬為這批珠寶銷售毛利潤(rùn)的三分之一,其他成本忽略不計(jì)算.
(1)如果每件珠寶加工天數(shù)分別為6,12,預(yù)計(jì)銷量分別會(huì)有多少件?
(2)設(shè)工廠生產(chǎn)這批珠寶產(chǎn)生的純利潤(rùn)為(萬(wàn)元),請(qǐng)寫出純利潤(rùn)
(萬(wàn)元)關(guān)于加工時(shí)間
(天)之間的函數(shù)關(guān)系式,并求純利潤(rùn)
(萬(wàn)元)最大時(shí)的預(yù)計(jì)銷量.
注:毛利潤(rùn)=總銷售額-原材料成本,純利潤(rùn)=毛利潤(rùn)-工人報(bào)酬
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,
是等邊三角形,已知
,
.
(1)設(shè)是
上的一點(diǎn),證明:平面
平面
;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為
為參數(shù)
以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為:
,直線
的極坐標(biāo)方程為
.
(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線
交于
兩點(diǎn),
與曲線
交于
兩點(diǎn),求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),.
(1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)且
時(shí),求
的取值范圍;
(3)是否存在實(shí)數(shù)a,b, 使得函數(shù)
在
上的值域也是
?若存在,求出a,b的值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com