日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.

          (1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

          (2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:

          日均派送單數(shù)

          52

          54

          56

          58

          60

          頻數(shù)(天)

          20

          30

          20

          20

          10

          回答下列問題:

          ①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;

          ②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

          (參考數(shù)據(jù): , , , , ,

          【答案】(1);(2)見解析

          【解析】試題分析:1甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

          ①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,

          ②不同的角度可以有不同的答案

          試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,

          乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

          ,

          (2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則

          ,

          乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則

          ②、答案一:

          由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

          答案二:

          由以上的計(jì)算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.

          型】解答
          結(jié)束】
          20

          【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,且離心率為 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

          (1)求橢圓的方程;

          (2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

          【答案】(1);(2)

          【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;

          (2)設(shè) ,

          當(dāng)直線的斜率不存在時(shí),可得;

          當(dāng)直線的斜率不存在時(shí),同理可得.

          當(dāng)直線、的斜率存在時(shí),

          設(shè)直線的方程為,則由消去通過運(yùn)算可得

          ,同理可得,由此得到直線的斜率為,

          直線的斜率為,進(jìn)而可得.

          試題解析:(1)設(shè)由題,

          解得,則,

          橢圓的方程為.

          (2)設(shè) ,

          當(dāng)直線的斜率不存在時(shí),設(shè),則,

          直線的方程為代入,可得,

          ,則,

          直線的斜率為,直線的斜率為,

          ,

          當(dāng)直線的斜率不存在時(shí),同理可得.

          當(dāng)直線、的斜率存在時(shí),

          設(shè)直線的方程為,則由消去可得:

          ,

          ,則,代入上述方程可得

          ,則

          ,

          設(shè)直線的方程為,同理可得,

          直線的斜率為,

          直線的斜率為,

          .

          所以,直線的斜率之積為定值,即.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知由實(shí)數(shù)構(gòu)成的等比數(shù)列{an}滿足a1=2,a1+ a3+ a5=42.

          (I)求數(shù)列{an}的通項(xiàng)公式;

          (II)求a2+ a4+ a6+…+ a2n.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若,求的最大值;

          (2)若恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是一個(gè)以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1B1C12,∠A1B1C190°,AA14BB13,CC12,求:

          1)該幾何體的體積.

          2)截面ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為, .

          1)求數(shù)列的通項(xiàng)公式;

          2)令設(shè)數(shù)列的前項(xiàng)和為,

          3)令,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) ,在處的切線方程為.

          (1)求 ;

          (2)若,證明: .

          【答案】(1) ;(2)見解析

          【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

          (2)由(1)可知, ,

          ,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

          從而證明.

          試題解析:((1)由題意,所以,

          ,所以,

          ,則,與矛盾,故, .

          (2)由(1)可知,

          ,可得,

          ,

          當(dāng)時(shí), , 單調(diào)遞減,且;

          當(dāng)時(shí), , 單調(diào)遞增;且,

          所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且

          ,

          .

          【點(diǎn)睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

          型】解答
          結(jié)束】
          22

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

          (1)求曲線的極坐標(biāo)方程;

          (2)在曲線上取兩點(diǎn) 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過橢圓的右焦點(diǎn)F作直線交橢圓于MN兩點(diǎn),H為線段MN的中點(diǎn),且OH的斜率為,設(shè)點(diǎn)

          求該橢圓的方程;

          若點(diǎn)P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)G的軌跡方程;

          過原點(diǎn)的直線交橢圓于BC兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

          1)求角A的大。

          2)若△ABC的面積S=5,b=5,求sinBsinC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方體ABCD-A1B1C1D1的棱長為4,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM∥平面A1DE,則動(dòng)點(diǎn)M的軌跡長度為______

          查看答案和解析>>

          同步練習(xí)冊(cè)答案