日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐P-ABC中,∠PAC=BAC=90°,PA=PB,點D,F分別為BC,AB的中點.

          1)求證:直線DF∥平面PAC;

          2)求證:PFAD

          【答案】(1)見解析;(2)見解析

          【解析】

          1)先根據(jù)中位線,證明DFAC,結(jié)合線面平行的判定定理可證;

          2)利用線面垂直判定方法證明PF⊥平面ABC,從而可證結(jié)論.

          證明:(1)∵點D,F分別為BC,AB的中點,

          DFAC

          又∵DF平面PAC,AC平面PAC,

          ∴直線DF∥平面PAC

          2)∵∠PAC=BAC=90°,

          ACAB,ACAP

          又∵ABAP=A,ABAP在平面PAB內(nèi),

          AC⊥平面PAB,

          PF平面PAB,∴ACPF,

          PA=PB,FAB的中點,∴PFAB,

          ACPF,PFABACAB=A,AC,AB在平面ABC內(nèi),

          PF⊥平面ABC

          AD平面ABC,∴ADPF

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點MN.

          (1)求橢圓C的方程;

          (2)當△AMN的面積為時,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知奇函數(shù)的定義域為.

          (1)求實數(shù),的值;

          (2)判斷函數(shù)的單調(diào)性,若實數(shù)滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

          平均每天鍛煉的時間/分鐘

          總?cè)藬?shù)

          20

          36

          44

          50

          40

          10

          將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

          (1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

          課外體育不達標

          課外體育達標

          合計

          20

          110

          合計

          (2)通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”性別有關?

          參考公式,其中

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在中,,點在線段上.過點于點,將沿折起到的位置(點重合),使得.

          (Ⅰ)求證:.

          (Ⅱ)試問:當點在線段上移動時,二面角的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù).

          1,的極值;

          2,證明 .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)fx=aexgx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點處的切線記為l1,曲線y=gx)在其與x軸的交點處的切線記為l2,且l1l2

          1)求l1,l2之間的距離;

          2)若存在x使不等式成立,求實數(shù)m的取值范圍;

          3)對于函數(shù)fx)和gx)的公共定義域中的任意實數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】是某港口水的深度(單位:)關于時間的函數(shù),其中.下表是該港口某一天從時至時記錄的時間與水深的關系:

          t

          0

          3

          6

          9

          12

          15

          18

          21

          24

          y

          5.0

          7.5

          5.0

          2.5

          5.0

          7.5

          5.0

          2.5

          5.0

          經(jīng)長期觀察,函數(shù)的圖像可以近似看成函數(shù)的圖像.最能近似表示表中數(shù)據(jù)間對應關系的函數(shù)是__________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于不重合的兩個平面,給定下列條件:

          ①存在平面,使得、都垂直于;

          ②存在平面,使得、都平行于

          內(nèi)有不共線的三點到的距離相等;

          ④存在異面直線,使得,,,

          其中,可以判定平行的條件有( )

          A. B. C. D.

          查看答案和解析>>

          同步練習冊答案