日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,面積S= abcosC
          (1)求角C的大;
          (2)設(shè)函數(shù)f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值時角B的值.

          【答案】
          (1)解:由S= absinC及題設(shè)條件得 absinC= abcosC,

          即sinC= cosC,

          ∴tanC= ,

          0<C<π,

          ∴C=


          (2)解:f(x)= sin cos +cos2 = sinx+ cosx+ =sin(x+ )+ ,

          ∵C=

          ∴B∈(0, ),

          <B+

          當B+ = ,即B= 時,f(B)有最大值是


          【解析】(1)利用三角形面積公式和已知等式,整理可求得tanC的值,進而求得C.(2)利用兩角和公示和二倍角公式化簡整理函數(shù)解析式,利用B的范圍和三角函數(shù)性質(zhì)求得函數(shù)最大值.
          【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】2016年微信用戶數(shù)量統(tǒng)計顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結(jié)果如下:

          微信群數(shù)量

          頻數(shù)

          頻率

          0至5個

          0

          0

          6至10個

          30

          0.3

          11至15個

          30

          0.3

          16至20個

          a

          c

          20個以上

          5

          b

          合計

          100

          1

          (Ⅰ)求a,b,c的值;
          (Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過15個的概率;
          (Ⅲ)以這100個人的樣本數(shù)據(jù)估計北京市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學期望EX.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an},{bn}滿足bn=an+1﹣an(n=1,2,3,…).
          (1)若bn=10﹣n,求a16﹣a5的值;
          (2)若 且a1=1,則數(shù)列{a2n+1}中第幾項最?請說明理由;
          (3)若cn=an+2an+1(n=1,2,3,…),求證:“數(shù)列{an}為等差數(shù)列”的充分必要條件是“數(shù)列{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)”.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=cos(x+ )+sinx.
          (I)利用“五點法”,列表并畫出f(x)在[﹣ ]上的圖象;
          (II)a,b,c分別是△ABC中角A,B,C的對邊.若a= ,f(A)= ,b=1,求△ABC的面積.

          x

          f(x)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列四種說法中,
          ①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
          ②命題“p且q為真”是“p或q為真”的必要不充分條件;
          ③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2, ),則f(4)的值等于 ;
          ④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是
          說法錯誤的個數(shù)是(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+4)=f(x),且當x∈[﹣2,0]時, ,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(0<a<1)恰有三個不同的實數(shù)根,則a的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某工藝品廠要設(shè)計一個如圖Ⅰ所示的工藝品,現(xiàn)有某種型號的長方形材料如圖Ⅱ所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設(shè)△ADP的面積為
          S2 , 折疊后重合部分△ACP的面積為S1
          (Ⅰ)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
          (Ⅱ)求面積S2最大時,應怎樣設(shè)計材料的長和寬?
          (Ⅲ)求面積(S1+2S2)最大時,應怎樣設(shè)計材料的長和寬?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某軟件公司新開發(fā)一款學習軟件,該軟件把學科知識設(shè)計為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過一關(guān)都獎勵若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎勵方案:第一種,每闖過一關(guān)獎勵40慧幣;第二種,闖過第一關(guān)獎勵4慧幣,以后每一關(guān)比前一關(guān)多獎勵4慧幣;第三種,闖過第一關(guān)獎勵0.5慧幣,以后每一關(guān)比前一關(guān)獎勵翻一番(即增加1倍),游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎勵方案.
          (Ⅰ)設(shè)闖過n ( n∈N,且n≤12)關(guān)后三種獎勵方案獲得的慧幣依次為An , Bn , Cn , 試求出An , Bn , Cn的表達式;
          (Ⅱ)如果你是一名闖關(guān)者,為了得到更多的慧幣,你應如何選擇獎勵方案?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】將函數(shù)f(x)=cos2x圖象上所有點向右平移 個單位長度后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,a]上單調(diào)遞增,則實數(shù)a的最大值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習冊答案